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DETECTION OF TRANSIENTS IN
NUCLEAR SURVEILLANCE-COUNTING CHANNELS

by

K. G. Porges

ABSTRACT

In certain nuclear-instrumentation problems, one must detect short
excursions in a normally quasi-constant input count rate. This report re-
views a number of such "transient detection" systems and describes in
some detail one particular application, fuel-failure monitoring in connection
with high-power density reactor cores. The instrument generally incor-
porates a "filter" which must be arranged to optimize the display of the
transient, or (where the channel output is used to actuate an alarm) to re-
sult in a specified detection efficiency and acceptable false-alarm frequency,
in conjunction with an acceptable announcement delay.

This report discusses the design of such a filter and gives formulas
for estimating the false-alarm frequency at a specified detection efficiency.
An elementary formula turns out to be of dubious reliability when the normal
background rate is low enough to yield only very few pulses within a time-
span defined by the "memory" of the filter. A more precise formula is
derived for such cases.

»

Where the false-alarm frequency cannot be reliably reduced to an
acceptable value and several independent detector channels are available,
certain logic networks can yield improvements. A number of such logic
interfaces are discussed and appropriate false-alarm frequencies derived.

In connection with the optimum filtering problem, the beneficial effect
of pulse-shape symmetrization is considered in detail. A simple digital
channel is described which should provide improved performance parame-
ters with considerably better long-term reliability than conventional analog
equipment.

I. INTRODUCTION

In general terms, the detection of transients in a surveillance or
search system implies timely warning that a normally rare event of a par-
ticularly interesting or possibly dangerous nature has occurred. Examples
of this type of situation abound in many fields of science and technology,
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scussed in the open literature. The subject

n considered in many different contexts in
More general treatments have chiefly

The statistics of count channels, on the

other hand, are dealt with in a thorough but limited vein in several works

on stochastic processes,z'5 as well as more summarily in books and a.rticles

on nuclear instrumentation, where the operation of count-rate meters is

usually discussed without consideration of response to short transients.

Somewhat more specific treatments of the false-alarm problem in a nuclear-

surveillance channel have appeared,6 based on the well-known treatment of

7
the zero-crossing rate of random noise by Rice.

some of which are not readily di
of this report may thus have bee
specialized or classified reports.
emphasized radar applications 5

A. General Description of Event-rate Transient Monitor

In a typical transient-detection system of the type considered in this
report, pulses of short duration are obtained from one or more nuclear-
radiation detectors which scan a source of such radiation continuously.
Under normal conditions, the source is assumed to vary relatively slowly
in time or remain constant but to increase strongly for a relatively short
time when the event to be detected occurs. The channel count rate thus
consists of a certain quasi-constant background with a superposed transient
signal. Other extraneous background due to unwanted detector pulses or
electronic noise can usually be removed by pulse-height discrimination.*

The pulses delivered by the pulse-height discriminator, still short
but of standard height and duration, are then fed to a processor, which con-
verts this digital input into an analog output. In the absence of a transient,
the output fluctuates in a way determined by the response of the processor
to the Poisson fluctuations of the input count rate. A transient (which may
have a certain characteristic structure) is correspondingly distorted by the
processor.

In almost any of the applications of transient monitoring mentioned
in Section II (to which, no doubt, many other examples could be added), the
expected transients may be much more intense than the background.** The
reliability of detection may then be readily made so high that any discussion
of filter response or statistics of detection would be entirely superfluous.
For other situations, however, transients, somewhat less intense in com-
parison with background, may occur with different shapes, from whichsome-
Fhing can be learned regarding the source. It is then evidently profitable to
investigate filter response with a view of emphasizing shape differences

*Where there is no extraneous background problem, the nuclear-radiation detector may be arranged ro deliver
a current directly into a wide-passband amphifier, which thus becomes the signal processor. This arrange-
**ment exhibits essentially the same statistical behavior as the pulse system described here.
As a typical example, the background may be due to "dark current” in a photomultiplier, while the transients
are short but relatively intense light flashes, as the photomultiplier scans a perforated mask over a light
source,



while minimizing random background fluctuations, so that the recorded out-
put may more readily reveal the "signature" of certain events. In many
transient-detection applications, the attention of operating personnel is
usually engaged by other instruments. This situation calls for an alarm (of
some sort), which goes into action whenever the analog output exceeds a
certain set level. Similarly, in an area scan (as in the example given
earlier) the transients essentially actuate an alarm, which registers the
coordinates through some mechanism coupled to the drive.

B. Performance Parameters of Alarm System

The use of an alarm discriminator makes the performance of the
system amenable to quantitative evaluation in terms of statistical or infor-
mation theory. The detection probability, for example. can be calculated
from the set level and filter response, to the extent that the intensity and
duration of the transient can be reliably estimated. Inevitably, the level will
be occasionally exceeded by a large background fluctuation; the correspond-
ing false-alarm frequency can also be calculated. (This does not include
such other sources of noise as electrical pickup, intermittent breakdown,
and other malfunctions, which may often be a major source of difficulty, but
cannot be considered as inevitable.) A third performance index is the speed
of detection or corresponding announcement delay between event and alarm.
This parameter, which depends on the alarm level, transient intensity, and
filter response, is important in high-speed area scanning, where it can intro-
duce a speed-dependent slewing of the coordinate. It is even more obviously
important in safety-type monitoring, where an event that gives rise to a
transient could be connected with the onset of serious trouble.

»

These three performance parameters (detection probability. false-
alarm frequency, and announcement delay) are evidently interrelated and
together depend on the three input variables: mean background rate,
transient intensity, and transient duration, as well as on the instrument
parameters: filter frequency response and alarm level. The performance
parameters are moreover limited to a certain range through practical con-
siderations; this simplifies somewhat the task undertaken in this report of
finding approximate equations which describe the performance of transient-
detection systems. Regarding the detection probability, for example, one
may safely exclude efficiencies below, say, 90%. On the other hand, detec-
tion probabilities over 99% are demanded only for some special missions
and can often be achieved only by allowing a rather high false-alarm fre-
quency. The latter parameter is somewhat dependent on the possible de-
ployment of several transient-detection systems (of which one, used for
timely warning, may have a rapid response, while others, through partial
integration, may have an inherently lower false-alarm frequency and at the
same time slower response). Aside from such considerations, the general
rule is that the product of false-alarm frequency and mean operating time
of the system must be much less than the number of transients (for area
scanning) or somewhat less than unity (for safety monitoring). For scanning
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e announcement delay must be somewhat smaller than the dura-
For safety monitoring, this delay can be defined only
hanisms through which dire consequences
may develop from the cause of the transient. Since such kno.wledge is often
not available, the detection delay may generally be set at a time not exceed-
ing other delays in the overall system (e.g., mean transport times from
core to detector in reactor safety installations).

systems, th
tion of the transient.
with some knowledge of the mec

In this report, performance parameters will be assumed to be con-
fined within these practical limits. To avoid undue complexity, we use the
simplest transient model, an abrupt increase in count rate of uniform in-
tensity, ceasing abruptly after a time T. In the same vein, only the sim-
plest, readily implemented filters are treated explicitly. (The discussion
includes, however, a treatment of logic processing of several channels.)
With these rudimentary model assumptions, straightforward relations be-
tween the performance parameters are obtained which one expects to be
valid in the limit of very large values of the statistical parameter nTy,

(n = normal background rate, T, = representative filter time constant).
Since, furthermore, certain criteria for transient detection are optimized
when Ty = T = transient duration, the above-mentioned limiting condition
amounts to the stipulation that N, the number of background counts during
the transient, be large. This condition may be met in certain favorable cases
of transient detection, but can only be approximately satisfied in some of the
more important applications. For these cases,* there is, strictly speaking,
no reliable treatment available, and the relations become approximations
that suggest, rather than prescribe, suitable choices of filter constants and
alarm level.

In the organization of a theoretical work aiming at specific practical
applications, one has the choice of (1) presenting all equations and then dis-
cussing their application and validity in various practical situations, or
(2) inserting practical digressions while developing the mathematical frame-
work. The latter approach is followed here, mainly to clarify the difficulties
encountered in applying the equations just where they would be particularly
helpful. The practical example of transient detection most frequently re-
ferred to, which provided the original motivation for this work, is a particu-
lar type of reactor fuel failure monitor, the FERDL (Fuel Element Rupture
Detection Loop) of EBR-II, described in some detail in Refs. 8 and 9. Fea-
tures of this system having a specific bearing on transient detection are
discussed in Section II.

* The background rate may be low precisely because strenuous efforts have been expended to make it so. The
facl:' that this also renders the application of sla[is[ical.[heory questionable should not be interpreted as'a
genlgration of such efforts; rather, it stresses the desirability of increasing the overall sensitivity, which ma
increase the background rate, but will increase the signal count even more, : :
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II. SPECIFIC TRANSIENT-DETECTION SYSTEMS

The following brief survey of equipment systems that can be classi-
fied as transient detectors is limited in principle to instrumentation based
on particle or photon counters. Thus, the input is a series of counts as
described in Section I. Within that broad category, one may then further
distinguish between area surveys and stationary transient detectors.

A. Area-survey Systems

Systems belonging to the area-survey group have the task of locating
stationary "sources" distributed over a certain area or perhaps volume.
To that end, a detector, equipped with a collimator or mask (and possibly
accompanied by a primary source that stimulates emission), is made to
move in a pattern that covers the area. At the same time, the coordinates
of the mask are kept track of; coordinate registration is triggered by the
"alarm" device coupled to the transient detector. The relative intensities
and spatial width of individual transients may also be required whereas the
detailed shape of transients usually conveys no useful information. Although
an exhaustive listing of examples of this kind of system would be beyond the
scope of this report, some typical applications come readily to mind. First,
there are surveying systems physically covering the earth's surface or sub-
surface, such as mineral surveys, oil-well logging, mine detection, or other
military applications. Second, there are laboratory systems in which a
small object or photograph is scanned; this includes in vivo scanning, track-
plate scanning, cloud or bubble-chamber photograph scanning, and similar
tasks. Finally, there may be applications in astronomy and allied fields.
All these systems have a common characterjstic: Direct relations exist
between signal duration and sweep speed on the one hand, and resolution
and sweep speed on the other.

In favorable situations, the contrast between presence and absence
of the "source" may be so strong at the highest practical sweep speed that
there is no need to appeal to statistical theory. In still other practical
situations, only qualitative information may be sought. Hence, a rather
primitive statistical theory would be sufficient; areas of special interest
may be then covered with repeated sweeps until a clear picture emerges.
However, it is also conceivable that the area to be covered is large, while
very good resolution is required and the sweep speed can be readily in-
creased. In that case, the detection probability and false-alarm frequency
for a certain sweep speed may well be of more than academic interest.

B. Transient Detection for Warning or Safety

Turning now to the second group of transient detectors, we find
stationary systems largely employed for protection; transients thus imply
danger and call for some sort of remedial action. The information sought
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often includes the signature' or detailed shape of the transient, which is--
or at least is hoped to be--a rare event. In contrast to the systems con-
sidered above, there is no control over transient duration, nor can one
return for a second look. On the other hand, there may be more scope for
elaborate and heavy instrumentation than for a vehicular system; fo.r etx-
ample, detectors can be readily multiplied up to a fairly generous limit.

ut important practical example of such a system, we shall

As a single b
nuclear power plants.

consider detection of fuel-cladding failure in

In the first group of transient detectors, the required sweep speed
ning the relative significance of statistical
concepts for a given application. For fuel-failure detection, a similar role
is played by the announcement delay allowed by the presumed consequences
of a fuel failure. Thus, certain types of reactors tend to develop small leaks
in the cladding, which do not immediately endanger the plant, merely re-
sulting in the contamination of the coolant by fission products. One may
then use detection systems that accumulate fission products from the coolant
in some way, thus increasing sensitivity of detection by sacrificing speed.
Such detectors are not actually transient detectors and can be designed and
operated without applying statistical theory. In contrast, other types of
reactors do not exclude the possibility of more violent cladding failures,
which could conceivably result in a rapid proliferation of damage. Such
plants evidently call for transient detection.

played a decisive role in determi

Specification of the maximum allowable announcement delay, as with
many other considerations connected with safety, is largely a matter of
policy. The formulation of this policy must consider (among other factors)
the likelihood of certain kinds of cladding failure for a given type of fuel and
the further likelihood of serious damage resulting from such failures. For
the more advanced reactors, such estimates can be supported only by rather
limited experience and test results; however, in general the speed of failure
detection desirable for a given reactor design is directly correlated with the
power density. To argue this point, we suppose that a "catastrophic" failure
of one fuel pin is conceivable which blocks adjacent coolant flow channels
with debris. At a power density of the order of 1 kW/cma, typical of fast,
sodium-cooled breeders, such a failure would entail a predictable, rapid,
local temperature rise, resulting in a highly probable rapid proliferation of
damage. In contrast, a similar incident in a water-cooled thermal-spectrum
reactor plant, operating at much lower power density, would have a much
smaller likelihood of seriously damaging adjacent elements.

Effective fuel-failure monitoring for fast breeders (such as EBR-II)
must thus provide for fast warning in at least some of the equipment chan-
nels. In addition, other channels, whieh integrate the signal and thus can be
inherently more sensitive, are useful for diagnostic purposes. With several
channels, based on different principles, it should be possible to draw infer-
ences regarding a failure that does not emit debris from the relative amount
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of short- and long-lived fission products, the relative amount of fission
products in the coolant and in the gas blanket, etc. The specialization of this
report in transient detection is not intended to de-emphasize the importance
of other, integrating monitor channels. However, such channels do not pro-
vide the speed of detection that could, in principle, forestall serious damage
to the core in the event (however unlikely) of a debris-emitting cladding
rupture.

C. The FERD System

To describe such a transient monitor in some detail, we consider the
FERD system, installed at the EBR-II plant, as an example. The driver fuel
of this fast breeder consists of uranium alloy pins bonded to stainless
jackets by an annulus of sodium; the cladding further contains a certain
amount of argon. The bonding sodium is normally enriched with short-lived
fission products, inter alia delayed-neutron precursors; longer-lived, highly
volatile fission products tend to collect in the internal gas cover. Assuming
that a serious cladding burst occurs, one can predict that the bonding sodium
will be rapidly expelled and mixed with coolant sodium; in addition, debris of
the fuel and cladding (or droplets of molten fuel) may be rapidly injected into
the coolant. This contamination is carried through the upper plenum and
through the heat exchanger, where the flow is sampled. The degree of mix-
ing and the sampling efficiency are not known and may be suspected to vary
considerably with the location of the burst can in the core. The high flow
speed of this plant, however, generally prevents widespread dispersion of
contamination, which should therefore enter the sampling loop as a spike
or "slug" of highly contaminated coolant, followed by a "tail" of less con-
tamination due to direct emission of fission groducts from bare fuel re-
maining in the core. (The "tail effect" depends on the degree of channel
blockage.) The monitoring loop pumps a fraction of the coolant stream past
a bank of neutron detectors, then back into the main coolant tank. A slug of
delayed-neutron precursors resulting from a burst as described above can
be estimated to pass the detector bank in 0.2-0.8 sec. Once returned to the
tank, the activity is dispersed in a very large volume of coolant and cannot
return to the loop until the short-lived delayed-neutron emitters have de-
cayed through many half-lives. Volatile fission products, however, gradually
pass into the gas blanket, where the more slowly decaying species among
them can be detected by means of an integrating monitor of high sensitivity
and reliability.

The strength of the transient signal can be reasonably inferred from
calculations of equilibrium enrichment of bonding sodium at full reactor
power, supposing further that one-third to two-thirds of the bonding sodium
is rapidly expelled through the pressure of the internal gas blanket of the
fuel pin, and assuming representative sampling.!® The detection efficiency
is known from a calibrated neutron test source; the overall detection effi-
ciency is also available from a series of tests in which a bare piece of fuel
of known surface was inserted in the core.!
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Except perhaps for the uncertain effectiveness of the sampling snout,
the EBR-II FERD system may thus be regarded as a fairly straightforward
example of a transient monitor whose input parameters can be inferred re-
liably enough to provide a practical example for the theoretical relations
between design and performance parameters discussed in this report.

These matters are now taken up in detail, beginning in Section III
with the conversion of the digital input pulse train into an analog signal.

The above description of the FERD system does not include the
means provided for display of transients. For the sake of completeness,
these are briefly described in Appendix E.
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III. THEORETICAL RESPONSE OF THE PROCESSOR
TO MODEL TRANSIENTS

The train of digital pulses delivered by the nuclear-detector channel
at the front end of any of the transient detectors described in Section II is
converted into an analog signal through a "processor" consisting of several
filter circuits, of which the count-rate meter forms the first. The object
of filtering is to deliver a clearly readable trace, in which (1) true transients
are readily distinguished from statistical excursions of the background and
(2) any features characteristic of a particular type of transient are clearly
portrayed.

As regards the first-named requirement, this can be described
quantitatively through the signal-to-noise (S/N) ratio, exactly as in pulse
amplifiers, in which connection the optimum filtering problem has been
widely discussed. The second criterion is less amenable to quantitative
treatment, in view of the difficulty of specifying the characteristic shape or
"signature” of the transient. Strong integration, that is, removal of high-
frequency components, will make it difficult to recognize a signature that
includes an appreciable high-frequency component. More generally, the
task of recognizing a true excursion, or even a particular type of excursion,
is essentially a matter of human judgment. In contrast, the performance of
an alarm discriminator, considered in Section IV, can be evaluated quanti-
tatively, since the element of subjective judgment is eliminated here, but
the alarm can render a decision only on the basis of a single criterion, the
instantaneous height of the level in comparison with a reference level. For
a transient detector whose verdict is crucially important and which operates
under difficult conditions (such as, perhaps, a, fuel-failure monitor), it may
therefore be expedient to provide an alarm only for alerting personnel and
thereafter relying for a final decision on interpretation of the trace.

The response of the processor may be fully described in the time
domain through its response function, H(T,t), to a transient of duration T,
consisting of a train of individual pulses of comparatively short duration, 7.
The response, F(t), to any single pulse is a special case of H(T,t); alterna-
tively, H(T,t) can be considered as derived from F(t) through convolution,
as discussed, for example, in Ref. 1. The performance of the processor
may be equally well specified in the frequency domain, which is a more
natural mode of description for pulse amplifiers subject to different types
of noise characterized by different frequency spectra. For the present
case, the time domain appears more appropriate and will be adhered to in
the discussion here. As regards the filter circuits, an increasing number
of fairly complex circuits, including active and passive types, delay-line
differentiators, etc., is now coming into use in connection with pulse ampli-
fication. For the time regime appropriate for transient detection, however,
most of these filters are impractical or difficult to construct. The dis-
cussion below is thus limited to the most elementary R-C networks.
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A. Count-rate Meter Circuit

A brief discussion of the operation of a count-rate meter for pur-
poses of transient detection is warranted; although the basic facts concern-
ing this type circuit are well known, they are usually considered only in
connection with slowly changing count rates.

Many versions of the basic Count-Rate Meter (CRM) circuit, shown
schematically in Fig. la, have been developed for a wide variety of nuclear
applications. Differing considerably in circuit detail, as well as in linearity,
stability, and available options, most such instruments behave as the ele-
mentary circuit shown. In this circuit, standard pulses of very short
length T (typically 1 usec) charge up a "dipper" capacitor, C4, with a stan-
dard charge, q, which is transferred by means of a diode pump circuit to
the "bucket" capacitor, Cy, whence it slowly bleeds away through resistor
Rp. The situation closely resembles the input of a voltage-sensitive pulse
amplifier coupled to an ionization chamber or junction detector in which
short current pulses of roughly standard height are generated, say by alpha
particles or fission fragments. This circuit is shown in Fig. 1b.
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a, Basic CRM Circuit b. Pulse-amplifier Circuit

Fig. 1. Circuit Arrangements for Transients and for Pulse Processing. A, = ideal amplifiers (co passband)
with arbitrary gain. The CRM is equipped with a diode pump at the input; the amplifier is fed
by a detector, such as an ion chamber, delivering short current pulses of roughly constant height.
Circuits, hence analysis or response, are similar, but parameters are different. The final clipper
is used in the CRM circuit only for transient monitoring; the final amplifier feeds an alarm
discriminator.

The output signal, F(t), of the CRM in response to a single input

pulse rises almost linearly during 7 and subsequently decays exponentially.
That is,

F(t) = (AV/x)(l - e-t/Tb) ~ AVt/T; O=t=n, (1a)
= (AV/x)(eX-1) e_t/Tb, Tt (1b)

where
AV = g/Cy, (2)

Ty = RyCy, (3)



and
x = 7/Ty. (4)

The step height, AV, is adjustable in most CRM's through a number of
choices of Cy, = q/AV; the response, V, to a steady input rate n is adjust-
able through choice of Ry, = V/nq. Figure 2 shows F(t) and the input pulse
on two different time scales.

Cp
J fud ©)
Fig. 2

= |.- | Single-pulse Response, F(t), of Circuit Shown in
o av @ Fig. 1a. The input is shown in I with the diode
| bridge disconnected; the pulse appearing at the
first stage is shown in II. The same picture is
shown in III, on a shortened time scale and in-
creased voltage scale, Curve A; Curves B and B*
% are single-pulse responses at the entrance of the
second stage (i.e., after passing filter Ricl)'
Curve B' represents a short time constant
av Tj << Ty; Curve B is drawn for T; = T}.

/ [
!
!

Suppose now that a sudden transient in the count rate steps up the
rate of delivery at Cy, for a time T of about 0.1-1 sec, and then ceases

To

113-650 o

equally abruptly, so that a mean number of pulses M, in addition to the back-
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ground, nT, are delivered during T. The circuit response to such a transient

is then given by

H(t) = (MAV/y)(l - e't/Tb), 0=t=T, (5a)
= (MAV/y)(eY-1) e't/Tb, TSt (5b)

where
y = T/Tp. (6)

Equations 5a and 5b evidently imply averaging over times short in
comparison to T, such that the "fine structure" consisting of superposed
individual pulses of risetime 7 does not appear. (The detailed and average
responses have been drawn schematically in Fig. 3.) The voltage pulse at



22

the input of a pulse amplifier due to a group of M electronic charges travel-
ing across, say, a gridded ionization chamber with transport time T, is also
given by Egs. 5a and 5b. In contrast to the CRM situation, however, the
background here does not consist of individual charges traveling across the
ion chamber at random times. Rather, the background is largely created
only in the amplifier, where many electrons traverse a small space inside
a vacuum tube or transistor with a much shorter transit time. The pulse
amplifier thus requires a high-pass filter (differentiating element) of time
constant T at the output to remove low-frequency noise generated in the
circuit; the input time constant, Ty, is then made very much larger than

T, and can be neglected. In contrast, current pulse amplifiers,lz used for
example in connection with small fission chambers of a typical capacity

Cp = 20 pF, deliver pulses across Ry = 50 ohms which makes the input
time constant T, ~ 10 nsec. In view of the orders-of-magnitude difference
in relative parameters, the S/N ratio, although computed from equations of
similar structure for the CRM and for the pulse amplifier, requires a
different interpretation.

- - |1 | |
|

I
|
|
I
I
I
|
|
|
I
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Fig. 3. Transient Response H(t) of Circuits Shown in Fig. 1. The input, with a
transient of duration T superposed on a background at rate n, is shown
in I; the response at the input of the CRM is shown in II. For easier
visualization, rates and number of transient pulses are shown much
smaller than in practical transient detection. For the pulse-amplifier
circuit, the transient is a current pulse, but background is at a much
higher rate; the response H(T) is, however, the same,

B. Signal-to-Noise Ratio; Single Time Constant

In considering now the S/N ratio, we must first define the "noise"
generated by the background, as the root mean square of fluctuations in the
CRM output level due to the superposition of the randomly occurring back-
ground. The mean-square fluctuation is equal to the second momen% of the

level distribution, which can be
2 ; calculated through Campbell's t 13
giving the kth moment, Ak: . ¢ W



Ay = n[w[F(t)]k at. (7)

00

This yields, in connection with Eqs. la and 1b, a second moment,

Az = 0 = n(AV)z(Tb/x) (l - l':-x). (8)

Given now that x 1s ordinarily of order 10™* or smaller. Eq. 8 reduces to
0? = n(AV)Tp/2. (8")

The derivation of Eq. 7, given for example in Ref. 7, presupposes
that the number of superposed pulses, nTy,. 1s large. This theorem fails
when nTy, << 1. In this case, the individual pulses are largely separated,
and level excursions beyond AV are the result of occasional pileup only,
such that a pileup approach, as suggested, for example, by Gold,'* would be
more appropriate. For the region of values of nTy near unity, there appears
to be no satisfactory theoretical treatment. This awkward circumstance
limits the application of Eq. 7, as well as the equations developed in the fol-
lowing sections, to CRM monitoring situations where nTy 1s relatively large,
as will be reconsidered in detail further on.

Equation 8', in conjunction with the first moment of the distribution

A1 = nTyH AV, indicates that the relative fluctuations, +/A;/);. vary as (Tb)-”z-

The switch selecting different values of Cy, 1s therefore usually labeled
'percent error' on general-purpose count-rate meters, which may appear
to imply that a large value of Ty, will result i a high S/N ratio. This is an
erroneous judgment in transient detection, where the absolute (rather than
the relative) magnitude of the fluctuations, which increases with (Tb)“’z.
has to be considered, in conjunction with the effect of the time constant on
signal amplitude.

Take the ratio of H(T) = Hp, . the peak signal amplitude, to g, from
Eqgs. 5a, 5b, and 8, and introduce the detectivity

D? = M%/N, (9)

where N = nT = mean number of background pulses during the transient.
One then finds the S?/N ratio, Ry, at the CRM output

Rae= e s gt (2D%/y)(1 - eY) = DU, (10)

where U, = circuit-dependent part of the S°/N ratio. Introducing now the
function

h=(l-e¥ (11)
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we may put

_ V2 (12)
Uy = v

i.e., against increasing Ty, for fixed T.

This is plotted in Fig. 4 against l/y.,
The maximum occurs at the point given by

eY -1 = 2y,

2 Pk
which comes to y,3x = l.ZéRgmax ~ 0.81D%. The striking fact brought out

by this plot is the optimization of transient detection for very small choices
of the CRM time constant, that is, slightly smaller than the transient

duration.

1.0 T

H

Fig. 4

(SWEHE

(S/N)2 = R2, the Transient S/N Ratio at CRM Out-
put, for Unit Detectivity D2 = M2/N. M = number

)
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ol 4/ SR o of pulses in transient, N = mean number of back-
= il 3 ground pulses during transient, Curve a: Without
: D 1 low-pass filtering (T; = 0); Eq. 10. Curve b: With

low-pass filter Tj = Tp; the square of the ratio R is
plotted against (Tp/T) = 1/y. Curve c: Square
pulses of length Ty,
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C. Signal-to-Noise Ratio; Two Time Constants

The ratio R, can now be further improved, although only fractionally,
by introducing a low-pass filter between the CRM output and the discrimina-
tor input. This decreases the peak response to the transient, but reduces
the channel noise even more. The usual practice of displaying the CRM
output by means of a servo-feedback recording potentiometer provides con-
siderable low-pass filtering through the electromechanical inertia of the
recorder. This hidden time constant, about 0.5 to 1 sec, can easily be too
long where transients of shorter duration are expected. For optimum dis-
play, as considered earlier, one thus requires an oscillograph based on a
low-inertia galvanometer, or a similar fast-acting display unit as described
in Appendix E.

The influence of a low-pass filter, equivalent to an integrating time
constant T;, on the shape of individual pulses and transients is considered
in detail in a number of treatises on the design of pulse amplifiers, for
example, by Gillespie.!® Introducing Z = T/Ti, we find a transient response



(MAV/y)(1 = e-t/Tb)/y = (l = e-t/Ti) /z 0=t=T7T, (13a)

H(t) R g

(1/y)e¥ 1) /T - (1/a)ez 1) /T
(MAV/y e ;

which comes to a peak value

Hpay = (MAV/y)(eY - 1)2/(2=Y) (2 1 y/(y-2), (14)

always at or beyond T. The response to a single pulse, in view of 7 << T,
is very closely approximated by the simpler equation,

-t/Ty  -t/T;
F(t) = (Av/y)ﬁ, 0=<t=< o, (15)

Inserting this response in Eq. 7 and integrating, one finds the second
moment,

o* = [nT(AV)/2y])(z/(z+y)) (16)

hence the SZ/N ratio with integration becomes

R? = 2D%(1/y+1/z)(eY - 1?2/ (2-Y) (ez _ 1 ¥/ (y-2), (17)

.
Equation 17 is the analog of the signal-to-grid (base) current noise ratio,
Eq. 26 of Ref. 15. As discussed in Ref. 15, as well as elsewhere, this equa-
tion is symmetric with respect to interchange of y and z, and turns out to
peak for y = z. This choice of time constants thus always yields the best
SZ/N ratio and will be provisionally adopted in the following discussions,
although the SZ/N improvement, as may be judged from Fig. 4, is relatively
modest. In Fig. 4, the ratio for y = z, which is

2 4D’ an '
R* = Wexp[-ly(h-l)]= D°;, A

is plotted, as well as the ratio R} for T; = 0, given by Eq. 10. The latter
case is a reasonable approximation for any choice T; << T. The peak for
equal time constants is reached for

sinh (Ymax/z) = Ymax/\/z—-

25



26

or ~ 2.98, and comes to R = 0.88D%. For small values of vy,
R? zm‘fl))(zy/ez. The SZ/N ratio given by Eq. 17'is also readily derived
from the respective response functions for equal time constants,

F(t) = (AVt/Ty) exp(-t/Thp) (18)

and

"

H(t)

N
-t/Tp A2 e N (19)
e/ o1+ ) 453

Equation 17' may again be simplified for purposes of computation.
In terms of the function h(y) defined by Eq. 11, we may write

RZ= mEUG (1)
and
2
i exp[-y(h-1)]. (20)
U, (hﬁ) xp[-y(h-1)]

Moreover, we are here not concerned with large values of the parameter y,
for which the simple model transient assumption may have to be abandoned
and a more specific transient shape introduced. For small values of y, an
expansion, presented in detail in Appendix C, yields

2 3
R I AHCA pRECA | 2o

e 24 24 24

We shall use this expression in Section V. Equations 12 and 20, which are
plotted in Fig. 4, point to a general policy of short-time constants Tb = T,
whether T; is chosen of comparable magnitude or longer.

At the same time, any "characteristic" signal that can be reasonably
represented by piecing together sections of length T is also made adequately
readable by this choice of CRM time constant, which thus appears to satisfy
both quantitative and qualitative transient detection requirements. Incontrast,
input-circuit time constants for pulse amplification are usually chosen much
longer than the duration of the current pulse T. This policy is partially due
to the presence of white noise sources in the amplifier circuit, and partially
the dependence of the maximum pulse amplitude Hy, on T. The fractional
shift, AHm/Hm, due to a fractional change in T, AT/T, comes to

m _ AT 1 - yle¥

Hm T (ey_l)l



for T; = Ty. The basic uncertainty AT for a gridded ion chamber, for
example, arises from the finite length and random orientation of ionization
tracks. Thus the current pulse, formed as electrons from different parts
of the track emerge through the grid and pass to the anode, actually deviates
markedly from the square shape it would have for a strongly localized
charge. A similar situation exists in many transient monitors; here, the
distribution of sources plays the part of the ion track, and a transient of
predictable shape occurs only for a point source moving past the detector.
Thus, the precision of pulse-height information, which is of fundamental
importance for the ion chamber or similar detector, is emphasized by de-
liberately making the output signal insensitive to input pulse shape; in
contrast, shape is the principal information content of the signal for tran-
sient detection.

With this strong emphasis on short time constants T,,, one should
not, however, lose sight of the restriction of the foregoing S/N ratios to
large values of nTy. This restriction implies that a given transient detector
with very low background cannot be described meaningfully by Eqs.100r 17'.
However, for such a case, a relatively more readable record is still obtained
with a short time constant than with a long one. Finally, Eq. 17' shows the
considerable benefit obtainable from the use of additional detectors (or more
sensitive detectors) in a given transient monitor, through the dependence of
readability on M?/N = D

D. Final Clipping Stage

Thus far, we have treated a filter with two time constants. When
the processor output is to be presented to an glarm discriminator, the
verdict of the latter must be unaffected by possible slow fluctuations in the
background rate, which up to now has been treated as constant. Actually,
the background is constant only in special transient-detection situations.
In a more typical application, the detection of fuel failures discussed in
Section II.B, the reactor plant may be operated for some time with a number
of small fuel-cladding leaks, if the danger of further damage does not war-
rant shutdown, location, and replacement of the leaking fuel elements. More-
over, a certain amount of background may be due to activation of the coolant;
hence the background level will reflect the power level with a delay charac-
teristic of the decay constant of the activity. This suggests that, rather than
referring the alarm-discriminator signal input to a fixed dc level, a refer-
ence level be used that is the average of the CRM signal over a time suffi-
ciently long in comparison to its transient response. Alternatively, dc
components may be subtracted from the signal input by introducing a suitably
dimensioned blocking capacitor. This mode of operation makes the alarm
discriminator still more insensitive to small leaks, which are already in-
efficiently detected by a processing channel whose time constants Ty are
adjusted to maximize the SZ/N ratio for short transients. As mentioned in
Section II, another processing channel may be fed by the same detectors to
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meet the requirement of leak detection as well as the more important re-
quirement of fast transient detection. The leak signal processor then ca‘lls
for long time constants throughout. More generally, when several tr.ans1ents
of different duration are encountered in transient monitoring, an equivalent
number of optimized processing channels are required for efficient detec-
tion. The use of a final clipper may be regarded as a typical feature of
monitoring systems in which transients exceeding a certain level trip an
alarm, in contrast to ordinary count-rate metering of nuclear radiation.

The final clipping stage (shown in Fig. la for the transient monitor
channel) is evidently quite analogous to the clipping stage of a pulse ampli-
fier (shown in Fig. 1b). For the latter case, the input time constant Ty, is
usually kept very long in comparison with T, which thus determines the
lower-frequency cutoff. In contrast, the final clipping time constant is
always longer than Ty, for the transient monitor.

The effect of a linear filter with three arbitrary time constants is
considerably more complex than the foregoing cases of one or two time
constants. We therefore present detailed calculations in Appendix B, from
which we quote here only the SZ/N ratio for three equal time constants.
Introducing the function

z® = 1 + y*h(h-1), (21)
we obtain

RA= DT, (22)
and

U, = 2Uy(Z-1) exp(Z-1). (23}

Equation 23 is plotted in Fig. B.1, which shows that a short final clipping
stage does not improve the SZ/N ratio, but may be useful for other reasons.

In the practical example of a fuel-failure monitor with alarm, con-
sidered above, it is expedient to keep T, sufficiently short to take out fluc-
tuations of, say,10 min or more, which should readily remove variations in
background level due to activation processes. A value of T, in this range
"chen still makes the inequality T, >> T} valid; hence the cl?annel response
is closely approximated by the two-time-constant filter response, U,.

E. Digital Count-rate Meter

g In cox'mcluding this section, we may add a brief remark on the response
o tama.ble with a digital processor, i.e., a unit that processes the input di-
rectly in such a way that the content of a digital store represents the input



rate. "Digital" count-rate meters are offered by several manufacturers;
such units, however, merely accumulate input counts for a fixed interval,
display the count, reset, and restart. The memory characteristic of analog
count-rate meters can be provided by subtracting a fixed fraction of the
content of a scaler continuously fed by the input at certain intervals.
Alternatively, a fixed number, corresponding to a certain fraction of the
mean content, may be subtracted. These types of digital units simulate the
leakage of charge from the bucket capacitor, and thus are describable in
terms of the equations developed above to the extent to which this simula-
tion succeeds.

To effect the subtraction requires elaborate circuitry. A more
straightforward digital count-rate meter can be implemented by accumu-
lating input pulses in an add-subtract scaler and feeding them into a delay
Ty, after which each pulse is subtracted. When such an instrument is turned
on with a clear scaler at a steady input rate n, the scaler contents will in-
crease linearly for Ty, and then continue to fluctuate about nTy, just as
would an analog circuit in which randomly arriving square pulses of length
Ty are added linearly. Delays of several seconds can be effected through
a large shift register,"’ driven by a clock oscillator at a frequency f such
that fT, = m = number of bits in the shift register. To avoid deadtime
loss of counts, we require that f >> n. The process is then governed by
Bernoulli (binomial) statistics; the mean store content, nTy, fluctuates with
a variance nTp(1 - nTb/m). Neglecting the small term nTp/m = n/f, one
readily finds the S/N ratios

Ry = D/y, y=1,

» (24)

Dzy, visa1;

with a maximum value slightly larger than for the analog case. Figure 4
indicates, however, that this better SZ/N ratio is maintained only over a
narrow range of the parameter y. For those types of transient monitors in
which the duration of the signal can be determined within certain limits
(e.g., from the sweep speed), a digital processor of the type described here
may offer a slight advantage as regards S°/N ratio, in addition to the more
significant advantage of stability.

For other types of transient monitors, in which the duration of the
transient cannot be precisely estimated, the SZ/N ratio of the digital CRM is
still comparable to that obtaining for a corresponding analog device. For
any system intended for continuous surveillance, stability is a crucially
important factor, which may make the relatively high initial cost of digital
equipment worthwhile. The digital unit is directly amenable to several
options in readout or storage of information which have become available
in connection with digital computing equipment. Concerning the application
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of a digital CRM to fuel-failure monitoring or similar tasks, note that the
unit described above is affected by background variations. Thus the alarm
cannot be actuated simply from a certain scaling stage without changing

the detection efficiency as a function of background level, as discussed
above. The alarm scaling stage may, however, be gated from a second
scaler in which background is accumulated for a fixed time, whereupon

the scaler is reset and restarted. Alternatively, the pulses emerging from
the shift register may be subtracted twice and fed to another shift register,
whose output is added. This "DD2" modus operandi allows a direct setting
of the alarm. Other advantages resulting from the symmetry of the
"response" described by this kind of system are discussed in Appendix B.
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IV. PERFORMANCE OF THE ALARM DISCRIMINATOR
AT HIGH BACKGROUND RATES

The development up to this point mainly concerned the quality of the
presentation of a transient, which involved maximizing the SZ/N ratio. This
parameter peaks for time constants comparable to the transient duration,
whether or not the bandwidth was restricted by an "integrating" filter. We
turn now to a discussion of the quality of performance of the alarm discrimi-
nator, which can best be described through two statistical quantities, the
detection probability and the false-alarm frequency.* To make these quan-
tities as independent of fluctuating background and other uncontrollable
factors as possible, dc components must be subtracted, as described in
Section III. This type of operation of an alarm discriminator may be
characterized as MNR (Mean Noise Reference level) in contrast to DCR
(DC Reference level). For quantitative evaluation, two essential assump-
tions in addition to the model transient shape must now be introduced. The
intensity of a "typical" transient must be specified, and this intensity must
be assumed to be well above the noise sampled during the excursion.

These model assumptions are perhaps more realistic for some ap-
plications of transient monitoring than for others. In particular, the trans-
ients one can reasonably expect in fuel-failure monitoring vary considerably
in intensity as well as shape, depending on the type of cladding burst, degree
of dispersion, and flow pattern of the plant, as discussed elsewhere.!” In the
sense used here, a "typical" signal thus implies the sudden release of, say,
one-third of the fission products accumulated in the bonding sodium of a
fuel pin, with ideally turbulent flow (hence, predictable decay en route) dis-
persed through perhaps 10 liters during transit and proportionately sampled
by the monitor loop. More violent cladding failures should result in cor-
respondingly more intense signals. In a number of other transient monitors,
one may similarly define a minimum transient strength, or perhaps a range
of transient strengths, which still allows a quantitative estimate of the
detection probability for each at a given alarm level and processor filter
response. In the discussion here, only the simplest model will be used to
derive the detection probability; further on, the false-alarm frequency will
be considered, for which a more extensive mathematical framework is
necessary.

A. Detection Efficiency

To obtain an expression for the detection efficiency, suppose that
the alarm discriminator is tripped by a transient containing A or more
pulses, arriving within T at a quasi-uniform rate. The probability that

*The term "detection probability" is used here in preference to the more common "detection efficiency” to
stress the statistical nature of this parameter and distinguish it from the purely instrumental efficiency of
the nuclear detectors. "False-alarm frequency" likewise implies a probability per unit time. (Itis per-
haps unfortunate that "frequency" denotes two rather different concepts, rendered in German, for example,



a "typical" transient contains a certain number of pulses is assumed t.o bet :
given by a Poisson distribution. Such would be the case for an appr:)x(;ma i y
issi i transported pas
of fission products, approximately evenly ;
i § The mean number of pulses in the

, in a fuel-failure monitor.
< G Chac With a mean background

i transient, M, is thus also the variance. i
:'}::::axi, :he backgro:.md sample during the transient comey tonT = N, wh.mh
is subtracted from the latter, but still influences the size of the total vari-
ance, increasing it to M + N.* In the limit of large numbers of pul.ses, Fhe
Poisson distribution may be conveniently approximated by a Gaussmfx dis-
tribution, which allows one to define the detection probability g(G') directly

in terms of tabulated functions:

g = Y1+0(G")), (25)
where
G = —M-4A (26)
VZ(M+N)
and
Gl
Sl il -t?
®(G') = ﬁf e dt
()
is the well-known error integral.!® Now let
&= M;A (26')

V2M

Then, for N/M << 1, as assumed explicitly here, we may express G' in terms
of G by expanding the root and further expand Eq. 25 in a Taylor series,
yielding the approximation

GN -G2
e-G o Ak (25')
2M /T

Practical considerations demand detection probabilities not smaller than,
say, 0.9, for which the leading correction term in Eq. 25' comes to approxi-
mately O.IN/M. Given N/M = 0.1, the whole correction can be safely ne-
glected, and the detection probability is thus effectively independent of slow
excursions in the background rate.

g= i1+e(G)-

An upper limit is imposed on the detection probability through the
necessary tradeoff of detection probability against false-alarm frequency;

* . ¢ " 3 :
Assuming the subtracted background is effectively measured over a time interval much longer than T,
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such a limit might be reasonably set at 0.99. For 0.90 =< g =0.99, Eq. 25'
can be conveniently approximated by a simpler expression,

“~ -pG
g = l-Bep ’ (25")

which is more accurate over this range than the error integral expansion
for large values of the argument given in standard reference works on
error integrals.!® The error involved in using Eq. 25" rather than Eq. 25'
may be judged from Fig. 5 in which both expressions are plotted; the con-
stants B = 1.9 and p = 3.17 are used here to give the best fit. Figure 6 is
a conventional plot of g versus G on "probability" paper.
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Fig. 5. Detection Probability g against Parameter G De- Fig. 6. Plot of g versus G on

fined by Eq. 26'. Curve A: Approximation over Probability Paper
the range of interest, Eq. 25". Curve B: Eq. 25.

B. False-alarm Frequency

We shall now derive the false-alarm frequency, first in an elementary
treatment and then in a more thorough fashion. The elementary treatment is
analogous to the well-known problem of electronic noise, with the important
proviso that this is applicable only in the limit of high background rates
and/or long time constants, i.e., where nTy is a very large number.

In that limit, it is plausible to assume a Gaussian distribution of
the analog level about its mean, zero, as well as a corresponding Gaussian
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distribution of the time derivative of the analog signal. A level crossing

is then assumed to occur whenever the signal is within some small distance

da below the level a and at the same time has a positive slope s. The time
At required by this is determined by the condition da = 8At.
With the level and slope distributions
P(a) da = (oa «/277)'1 exp(-az/ch) da, (27
and
P(s)ds = ( J2m os)" exp(-sZ/Zozs) ds, (27)
respectively, one finds a total level-crossing probability
(ve]
W = P(a)At/ E2 - 8 da. (28)
0

Hence the crossing rate, equal to the false-alarm frequency, is given by
integrating and dividing by At to yield

f = (0s/2m0a) exp(-aZ/Zog). (29)

This derivation was first formulated by Campbell and Francis.!? A different
derivation, based on more rigorous considerations, is outlined in Appendix A.

The second moments of the level and slope distributions, given in
Eqgs. 27 and 27', can be calculated from Campbell's theorem, Eq. 7, which
one would expect to be valid for the superposition of the time derivatives
to the extent of its validity for the superposition of the direct values of a
large number of individual pulses. The second moment of the level distri-
bution has already been calculated for the general case of arbitrary time
constants (cf. Eq. 16). For the choice T; = Ty,

QL= AV W'l /2, (30)
Similarly, og is obtained by differentiating Eq. 18 with respect to time,
inserting this "slope response' into Eq. 7, and integrating, with the result

0g = (AV/2) v Ty, (31)

The level a in Eq. 28 must now be connected with the number of pulses A
in the transient that will just trip the alarm level when the latter is set
for a detection probability g (cf. Eqs. 25 and 25"). Evidently the level

is just equal to the maximum of the response to a transient of A (rather
than M) pulses, given by Eq. 14 if A is substituted for M. Combining



Eqgs. 14, 26', 29, 30, and 31, one thus finds the false-alarm frequency for
equal time constants T; = Tp, when an MNR -connected alarm discriminator
is set at a detection probability g for transients of expected duration T,
containing a mean number of pulses M, in the presence of a background of
mean rate n:

log £ = log y - log 2nT -1 D*U{w?(g), (32)
where U,, the filter response for two equal time constants, is given by
Eq. 20. The function W(g) depends on the required detection probability;
hence again on mean transient pulse number M,

W(g) = 1 -G v2/M, (33)

where G is given by

(e Ry B :
L ~g

derived from Eq. 25". Equation 32 implies very large values of the
statistic nTy, but should yield at least qualitative estimates of the false-
alarm frequency for more modest rates. Moreover, the model assumption
of a "square" transient shape makes this prediction unreliable for y = 1,
where the detailed shape of the peak becomes important. Plots of Eq. 32,
such as Figs. 7 and 8, which are based on more or less realistic background
rates, are therefore to be interpreted with some caution. In particular, the
strong minimum year y = 2.7 fails to take realistic transient shapes into
account and falls, for realistic background rates, into a region of low values
of nTy,. At some distance from the minimum, where y = 0.5 and nTy, = 30,
one might have more confidence in the validity of Eq. 32. As shown in Fig. 7,
such a choice of the time constant still results in rather low values of f. It
is therefore of considerable interest to obtain a more thorough derivation
of the false-alarm frequency which shows the dependence on nTy more
explicitly. This requires a lengthy mathematical development and will
thus be deferred to Section V. For the present, some discussion of the
possibility of exploiting the decline of the false-alarm frequency at small
values of y is indicated, since such a choice is frequently made by operating
personnel who have been using count-rate meters for monitoring nontrans-
itory signals.

Small values of y result in small values of the last term of Eq. 32.
This term is responsible for the strong minimum, such that the first term,
log y, dominates. Now W?(g) and D? are independent of y; hence, small
values of the last term imply a very low response U,(y). This leads to the
apparently paradoxical result that the false-alarm frequency declines as
the signal peak becomes smaller than the rms background. However,
although purely statistical background fluctuations under these conditions
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Fig. 7. False-alarm Frequency at Fixed Background Rate n = 30 pps and Transient Dura-
tion T = 0.5 sec, for Various Values of M (number of pulses in the transient), as
a Function of the Time-constant Parameter T/T}, (T}, = integration and differ-
entiation time), with Detection Probability g = 0.95 (Eq. 32)
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Fig. 8. False-alarm Frequency at Fixed Background Rate n = 30 pps and Transient Dura-
tion T = 0.5 sec, for Various Values of M (number of pulses in the transient), as
a Function of the Time-constant Parameter T/ T, (T}, = integration and differ-
entiation time), with Detection Probability g = 0,99 (Eq. 32)

are, on the average, higher than the response to the transient, they are also
considerably reduced in frequency. Hence the rate of crossing the alarm
level may still be low. As y becomes very small, the false-alarm fre-
quency becomes virtually independent of the detection probability and
approaches the frequency of crossing the mean level in the positive dir-
ection or "zero-crossing" frequency. This may appear to suggest that
small choices of the time-constant parameter y allow independent optimi-
zation of both transient-detection quality parameters. Such a conclusion

is, however, largely illusory for two practical reasons: First, all variations
of the background rate other than purely statistical are ignored in the above
argument; second, equipment stability is not taken into account. Settings

of the alarm discriminator close to the mean level obviously change
drastically as the mean level shifts, and similarly are difficult to maintain
with the required degree of stability over long periods. Moreover, we have
thus far not considered the third transient-detection quality parameter, the
announcement delay, which is strongly dependent on the choice of y. The
response H(t,T) for equal time constants, given by Eq. 19, peaks at a time
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v _ Tb,y<< 0% 34
boae = T/ e y)'{l.OST,y=3. (34)

Since a signal that just barely trips the level discriminator results
in a delay of the order of ty,,x, the choice of a long time constant implies
an equivalent announcement delay. Admittedly, this is only true for equal
time constants; if the bandwidth is increased by reducing the integrating
time T;, the response given by Eq. 12 applies, and the response peak is
reached earlier. However, the ratio cs/ga computed for that case from
the time derivative of Eq. 15, inserted in Eq. 7 and combined with Eq. 16,
comes to

(0s/0a) = (TiTp) V2 (35)

The improvement of detection speed available by increasing the bandwidth
is thus bought at the cost of an increased false-alarm frequency. This
situation is analogous to certain nuclear-electronics experiments where
timing information is sought and background problems can sometimes be
greatly ameliorated through logic processing. The potential application
of such logic processing is therefore of some interest and will be discussed
in Section VI of this report. Before considering this possibility, however,
we must still discuss the effect of a large choice of the parameter y on the
false-alarm frequency for relatively modest rates and fast transients,
where statistical theory is in increasing difficulties.



V. FALSE-ALARM FREQUENCY FOR PRACTICALLY
ENCOUNTERED BACKGROUND RATES

The derivation of Eq. 31, which was sketched in Section IV,
specifically assumes that the statistical parameter nTy is large enough to
allow the approximation of the level and slope distributions by Gaussians,
even though the random superposition of any finite number of specific
functions F(t) must necessarily result in distributions that depend to some
extent on the level and slope distribution represented by F(t). This is
evident for ideally square pulses, whose superposition is a "staircase"
pattern, and thus still true for square pulses that have been passed through
a low-pass filter to round off their edges slightly. With increasingly heavy
filtering, as well as large numbers of superposed pulses, the distributions
of level and slope gradually approach a Gaussian shape, but still must be
expected to deviate noticeably from a normal distribution far in the "wings."

A. Edgeworth Correction

Distributions that do not differ strongly from Gaussian shape can be
written as a Gaussian and a correction, which can in turn be developed in a
power series in the argument of the Gaussian. The problem of finding the
coefficients of such a series was first treated by Edgeworth?® and is dis-
cussed in less detail by Cramer.?! For a distribution whose first moment
is zero (as for random counts processed in MNR-mode), the Gaussian
parameter comes to

B =aloa (36)
»
where a = level above zero, and 0, = v\, = second moment of the trace.
The distribution, in terms of this parameter, is given by i
3 a4 2 d6
P(g) = ¢(B) -Aﬂ+<a—¢+% —¢l>-.... (37)
dﬁ3 dﬁ‘ dﬁb
where
A = (1/3)0/33%), (38a)
B = (1/4)(\/AD), (38b)
and

¢ = (2m=1/2 exp(-p*/2).
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A and B evidently depend

The moments of the distribution in coefficients :
derivatives of the Gaussian

on the filter, through Campbell's theorem. The

are
3
j—ﬁ% = (8- 38)
':4_5'0: = (ﬁ4'6l32+3) (o]
and

Lo 6. 15p%+458% - 15) ¢.
ap® (B B* +45p ) ¢

Evaluating the moments and coefficients for a filter with two time constants
from the respective Campbell integrals (Eq. 7), one obtains the values shown
in Tables I and II. For equal time constants, which will be assumed hence-
forth, successive terms in the Edgeworth series are proportional to half-
powers of (nTb)'l and thus decline rapidly when n is large. For that reason,
the Gaussian approximation is entirely adequate for problems involving
electronic noise. For the present case, in contrast, the series may well

fail to converge beyond a certain value of the parameter B, given a relatively
small input rate n and a small choice of the filter constant Ty,. The validity
of Campbell's theorem (used for evaluating the moments) is also questionable
for small values of nT,. Therefore the convergence of the series may be
taken as an indication of the limit of validity of any treatment of the trace
distribution based on statistical considerations. A somewhat more con-
venient equivalent criterion will be discussed further on in this section.

TABLE I. Semi-invariants Ay of the Trace Distribution Generated by a Random
Count Rate n in a CRM with Time Constant Ty and Filter Time Constant T;

Moment
Order,
k (a) T; and Ty Arbitrary (b) Ty = Ty () T; & Ty
: o nTp Ty
2 L S nTp nTy
R ) = =
2
3 # nT_b 20Ty nTp
(Tp+Ti)? +1 TpT; 3 9 3 3
3
/i Ty nTy 3} nTy nTy,
(Tb+Ti)[(Tb+Ti)2 +%TbT-i] 4 32 4 =
I : (k -1)t nTh nTp

k-1 kK %




TABLE II. Edgeworth Series Coefficients for the Same Filter

Coefficient T; and Ty, Arbitrary T =Ty T

i<< Ty
S J3 ST T - ;- o 5 2
3l x_:/_z 9 (Tp+T;) + TpTy/2(Tp+ Ty "0 g1 (0Tp)™"* =5 (aTp)™2
1A 1 To(Tp + Ti) ] y
e s | s T, )-1 1 -1 = -1
4% 24 (Tp+Tq) + % TpTy il 64 (°To) 23 (0Tp)
Ay T (T4 T)

1f1 X 1 b{Tp+Tj o 32 1
s = — 2 T, )1 e S 2. -1
2 (3' A-:/') 81 [(Tp +Tj) + TyT;/2(Ty, + TpT e 812 e 71 (=To)

k -(k
e l(i)k(n'l' yr=(k/2) 22Ty - (KA)
k! JKk/2 k \k b k - k!

To find the false-alarm frequency based on a quasi-Gaussian level
distribution, we write an equivalent distribution for the slope,

d3 4 2 d6
P(y) = ¢(y) - ar 22, ( o S _°°)- (39)
ay? ay* ar

whose coefficients are similarly derived from Campbell integrals involving
the single-pulse response dF/dt. For the foregoing case of equal time
constants, dF/dt = (AV/Tb)(l -t/Tb) exp(-t/Tb), from which one readily
finds

—
o
—

Al

=

=]
:I
o

(39a)

and

Bt d

B' = = ——.
64 nTy

(39b)

The false-alarm frequency is now calculated as in Section IV by
integrating the joint level-slope distribution over all positive slopes and
dividing by At to give

[ I/Z -
f = (—X,’—- e-ﬁ’/2[1+A(p33-3/3) - ][ Y dy P(Y). (40)
42, A

The integration is straightforward. Using the identity

k k-2
W JPOR, meed | (41)
d’yk dyk-z :
()
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one finds that the first-order (odd-power) correction term vanishes, and the

integral comes to

°° : 0.0196
fov dy P(y) = (2m)~V/2 [1- (B'-gAﬂ)J = (2m) ‘/‘<1-H—Tb->- (42)

The next higher correction term, omitted here, is of odd power in the
parameter Y and therefore also vanishes.

The expression thus obtained for the false-alarm frequency still is
cast in a form that contains its dependence on the filter time constant Ty
both directly and indirectly through . The latter parameter canbe expressed
in convenient form by an expansion (presented in Appendix C),

B = W(M;g) R(D;y) = WDU,
where, according to Eq. 20!,
U, = (244/e)(1-y2/24 +1.1y*/576 - ...), (43)

which is a fair approximation up toy 1. Moreover, by introducing the
variable

u = y/N = 1/nTy, (44)

where, as before, N = nT, we can separate B into a part that depends (at
least to a first approximation) only on the transient strength M and speci-
fied detection probability g, and a simple function of u:

B = H Ju(l-eXu?+1.1e%t- ...), (45)
where

H = (2M/e)[1 - (2/M)V2G] (46)
and

el =N 24 (47)

Collecting all terms, we obtain the false-alarm frequency as a function of
the variable u and constants H and e? only:

log (£/n) = log (u/2m) + log [1 - E(u)].- HTZ“(I -2€fu?+2.11etut- ), (48)



where
E(u) = kju - ku® + kyu® - kau* + ol (49a)

with coefficients

k; = 3(Ha+b) +c, ]
k, = H%a + H% + 3(Ha+b) c,
k; = H%e + 3Hae? + (H%a +H%d) c,
> (49b)
ky = Hba?/2 - 6H2d€? - 3H%ae? + (H'e + 3Hae?) c,
ks = €?[4H% - 3.3 Hae?] + H%a?/2 - (6H%de? - 3H%ae?) c,
J
The constants
.
a = 0.0987654,
b = 0.0087615,
c = 0.0195973,
> (49C)
d = 0.1257285,
»
e = 0.0575345,

are derived from the coefficients given in Table II, specifically for Ty = Ty

B. Criterion of Validity Limit

The form of Eq. 48 suggests the adoption of a validity criterion
based on the correction term E(u). Given a certain set of values {H,e}
and a filter whose integrating and differentiating time constants are adjust-
able concurrently, the false-alarm frequency estimate provided by Eq. 48
becomes increasingly unreliable as E(u;H,€) approaches unity. Equation 48,
in particular, and statistical theory, in general, become inapplicable for
values of the parameter u for which E(u) becomes so large that Eq. 49a
fails to converge.
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To illustrate this limit, we shall use a numerical example based on
the parameter values contained in Figs. 7 and 8 (M = 25, 30, 35‘, 40:.
g = 0.95, 0.99). The values assumed by the parameter H are given in
Table III and plotted in Fig. 9. With N = 15 (n = 30, T = 0.5 sec) as
specified for Figs. 7 and 8, Eq. 48 yields the false-alarm frequencies
plotted in Fig. 10, for H = 10, 20, and 30, respectively. Values for an
"uncorrected" Gaussian distribution, according to Eq. 32, are also plotted

for comparison.

TABLE III. Values of the Parameter 100, -

| A R 2
H = (2M/e)(1 -G +2/M) for :g 2
Certain Choices of M and g i _:
60 =
= = g=0.99 E
M g =095 g = 0.99 20 |
9=0.95 4
25 12.66 9.83 30 o -
g 15.43 12.70 20 I | SR T (10 S
10 20 30 40 50 60 70
H
35 18.56 15.65
113-955
40 27.80 18.61 Fig. 9. TheParameter H versus M, forCertain

Choices of Detection Probability g

UL | T T T N R

Fig. 10

False-alarm Frequency for Parameters n = 30,

T =0.5sec as a Function ofu = (nTb)'l, for Dif-
ferent Choices of H(M:g), According to Eq. 48 (solid
lines) and Eq. 32 (broken lines). Equation 48, an
improved version of Eq. 32, becomes statistically
unreliable where the heavy lines are broken and may
be inferred to fail entirely where these lines stop.

0. 1.0
Nyt +113-954



Figure 10 demonstrates that the spectacular reduction of the false-
alarm frequency predicted by Eq. 32 does not occur when we consider a
more realistic distribution, which differs only negligibly from a Gaussian
in the peak region, but is much stronger for large values of the parameter.
Sample values of the correction E, given in Table IV, show that this cor-
rection becomes negative in the peak region, as one would expect, to com-
pensate for the positive correction outside. Considering, as discussed
above, that Eq. 48 is not valid when the correction E becomes much larger
than unity, the false-alarm frequency according to Eq. 48 is drawn as a
solid line up to that point, and continued a small distance beyond to show
the trend. Predictions according to Eq. 32 are shown as a broken line.
Thus, for example, a false-alarm frequency of less than once per day for
H = 20 would appear to be achievable if one were to rely, wrongly, on
Eq. 32. Equation 48 makes it apparent that a much higher false-alarm
frequency is likely to prevail. To the extent to which the parameters
chosen for the above numerical illustration are realistic, it points to the
need for further improvements; some possibilities in this regard are dis-
cussed in Section VI.

TABLE IV. Corrections E(u) for H = 10, H = 20, and H = 30,
According to Eq. 48

H =10 H = 20 H = 30

u E(u) u E(u) u E(u)
0.1 +1.243 0.05 +4.1 0.033 +5.65
0.06 +0.218 0.03 +0.781 > 0.020 +1.251

0.0133 +0.478

0.04 +0.0467 0.02 +0.233 0.0066 +0.0562
0.01 -0.0194 0.005 -0.009 0.00033 -0.0007
0.001 -0.003 0.001 - - -

C. Optimum Choice of Parameters

With this improved understanding, we now consider the practical
matter of finding the best choice of time constants and alarm-level set-
tings for a transient detection system of known parameters M, T, and n.

The first question of interest in that connection is the best tradeoff
between false-alarm frequency and detection probability, assuming that
the performance parameters are not good enough to satisfy an initial
specification of, say, less than 1% chance of missing the transient at
false-alarm frequency no higher than once a week of continuous operation
(1.6 x 10-%). We may further suppose that a 5% chance of missing is still
barely acceptable and a somewhat higher false-alarm frequency might be
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countenanced. The following useful relation betwefan these two pe}:fo;'n:acnce
parameters is obtained by differentiating Eq. 32 with respect to the dete

tion probability:
dlog f _ WgR? /}' (50)
dlogg p(l-gVM

In practice, the number of pulses in the transient, M, will.lie betweex:x f10 and
100. (For smaller numbers, the theory developed here fails to z'lpply, .or
much larger numbers, calculations become unnecessary.) E'quatlon .50 is
plotted in Fig. 11 for pulse numbers of 10 and 100 over the mte::estmg

range of detection probabilities. The plot demonstrates the rapid pfercentage
increase of the false-alarm frequency for a 1% change in the detection
probability when a very high detection probability is speciﬁef‘l.. Tl?us, a
slight retreat from such stringent detection-probability specifications ;

will yield a significant improvement in the false-alarm frequency ke:-epmg

in mind that R? is about 10. On the other hand, a sacrifice of detection
probability below 90% yields rapidly diminishing returns.

o

Fig. 11
Fractional Change in False-alarm Frequency per Unit
Fractional Change in Detection Probability for Tran-
sients Consisting of 10 to 100 Pulses, as a Function

of the Specified Detection Probability, at Unit S/N
Ratio R

/%

at
f

0421_1;1 I ! 450 L I

0.90 094 096 0.98 0.990 0994 0.997
9 113-662

As regards the choice of time constant, Tp should be short enough
to provide detection of the transient within a specified maximum delay.
As discussed in Section II, the delay depends on the mission of the transient
monitor; for situations of extreme hazard, the specifications might simply
call for "as short a delay as possible." However, time constants of the
order of magnitude of the transient length introduce considerable uncer-
tainty in the detection probability, and even for somewhat longer time
constants, Eq. 48 becomes unreliable.

Another matter of choice that can be guided to some extent by
referring to Eq. 32 or 48 is the investment in detectors and ancillary
equipment. Frequently, more detectors can be used, at only slightly worse



detection efficiency, so that both M and N are approximately proportional
to the number of detectors. One may then determine how many detectors
will meet detection-probability and false-alarm specifications, provided
the local background level is known. It may well turn out that the number
of detectors exceeds the space available for them. In such a case, possible
improvements are also available through the use of logic circuitry, which
are discussed in Section VI.

Some remarks on the performance of a digital count-rate meter,
as described in Section III, are presented in Appendix D.
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VI. LOGIC PROCESSING OF TRANSIENT-DETECTION CHANNELS

The possibility of logic (coincidence) processing of t.ransient- '
detection signals arises from the basic fact that many transient-detection
systems use several detectors--partly for detection efficienf:y. partly' for
improving overall reliability. The detectors are frequently in a relatively
inaccessible location, which may further be exposed to high temperature
and radiation levels. The bulk of the channel electronics must thus be
separated from the detectors. Even with careful shielding, cables intercon-
necting these units are prone to pick up noise pulses from nearby electrical
machinery (pumps, motors, relays, etc.). Such pickup signals can be con-
siderably reduced by requiring coincidence somewhere along the signal
path.

A. Comparison of k-fold OR versus AND Scheme

Suppose now that the system disposes of k identical counters, oper-
ating at the same detection efficiency, and that a natural background at a
level n exists in each channel. The question arises whether imposition of
a k-fold coincidence requirement (or any less stringent coincidence require-
ment) increases or decreases the overall false-alarm frequency in com-
parison to the straightforward addition of all channels (as treated in

Section V).
(a) "OR" SCHEME

To clarify this discussion,

‘ = n Fig. 12 shows electronic block dia-
m m n ALARM  grams for both schemes of informa-

tion processing. We shall, in the

following discussion, denote the k-

fold coincidence between alarm dis-
(b) "anD" scHEME criminator outputs as the AND

system; we shall refer to the addition
" of all k channels ahead of the single
AND ALARM  CRM-alarm discriminator channel
—- as the OR system. A transient of
identical strength, consisting of M,

pulses in the average, lasting a time
T, is assumed in each individual

113-661
Fig.12. Logical OR versus Logical AND Arrange -
ment of a Two-detector Transient Monitor-

ing System. dj, dg = detectors; Hy, Hg = chansd.

pulse amplifiers/pulse -height discrimina-

tors; P1,Pg = processors, consisting of To make a fair comparison
count-rate meter, filter, and alarm discrimi- between AND and OR logical con-
nator operating in MNR mode; AND = nection of k channels, we shall as-

coincidence circuit; OR =
t; O adder. sume that alarm levels are reset so

g A as to secure equal detection proba-
bilities according to Eq. 25, and then calculate the false-alarm frequency
for either case. It is also interesting to compare false-alarm frequencies

of each k-fold system with a single channel, with similarly specified equal-
ization of alarm levels,



Let A, = alarm level (in single pulse heights) for a single channel,
Ap = alarm level for each of k alarm discriminators in a k-fold AND
scheme, and Ag = alarm level for the common alarm discriminator in a
k-fold OR scheme. According to Eqs. 25' and 32, we can define the fol-
lowing ratios:

A, 3
W,=E=1-G, ZMI.

A
Wo = —= = 1 - Gov2/kM,,

(51)

and

WA=

A
A e
Wwo=i-Oy 2/M,.

7

The parameters G,, Gg and Gp are in turn related to the detection prob-
ability through Eq. 25 or 25". We shall prefer here the more convenient
form given by Eq. 25":

gi=1-B exp(-pG;); i=1 0, A.

The condition of equal detection probabilities,

81 = Eg = 'Ear (52)
where, in view of the coincidence requirement‘for the AND scheme,

gA = (Sr)k = 1 - kB exp(-pGp) + ...s (53)
yields the following relations between the parameters Gj:

Gy = Gg = G, - € (54)
where

€ = (log k)/p. (55)

The detection probability gr in Eq. 53 is that of each of the k channels in
AND connection, whereas g, refers to one of these channels by itself, set
to make g; = gp.

The false-alarm frequencies can now be directly compared. For
this comparison, which is expected to yield largely qualitative information,

49



50

Eq. 32 (which lacks the Edgeworth correction) is entirely adequate. .It is
interesting here to investigate the effect of different cho?ces of the. t1n’1re

parameters T; and Ty in relation to the expe-ctec? transient duration T.

Specifically, we consider three possible combinations:

(a) Tb = Ti = T,\
= . i
(B} Ep=t T [ (56)
and
('Y) Tb>> Ti‘ P,

Sets o and B yield a single-channel false-alarm frequency:

log f; = log y - log 2nT - $D?UsW%  (T; = Ty,). (57)
For 7, one finds, on the basis of Eq. 35, the similar expression

log f, = +logy + 3log z - log 21T - 1 DPEWS (T 2> Tk {57%)

where the circuit response U, is given by Eq. 12. It is now apparent from
Mg, 57" that a choice T; << T (z>> 1) will result in considerably increasing
the false-alarm frequency, as discussed near the end of Section IV. For
almost all of the excursion monitors described in Section II, an announce-
ment delay of the order of the mean transient duration T is acceptable.
This leads to the reasonable specification T; = T in connection with the
time-constant set 7, which will be adopted in the following:

(v') Tp>> Ty = T. (56")

The z term of Eq. 57' thus vanishes, while the last term of that equation
is actually negligibly small (T >> T; hence, y<< 1 and Uy <<1).

The time-constant sets are interrelated in two ways. On one hand,
sets B and y provide a comparison of two systems with equal values of Ty
and T and different choices of T;, which amount to maximum and minimum
integration, respectively. On the other hand, sets @ and 7', with fixed T;
and T, refer to minimum and maximum differentiation, bearing in mind
that Ty is limited in length by practical considerations such as nonstatis-
tical excursions and equipment stability, discussed in Section IV. The

chosen time-constant sets thus span the full range of practically available
two-element signal filters. 5
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For k channels in OR connection, one readily finds

log fo = log y - log 27T - 3 kD*USWZ;  (T; = Tp): (58)

log fo = $log y - log 2nT;  (Tp >>T; = T). (58')
To compare the false-alarm frequency developed by an OR system and
that developed by one channel of that system alone,? we combine Eqs. 57

and 57' with Eqs. 58 and 58' to get

log fg - log f; = -3 D’Ui(kWg - Wi);  (T; = Ty (59)

log fg - log f; = 0; I A, (59')
These equations show, as discussed in Section IV, that the wrong choice of
time constants can nullify any improvements of the performance arising
from additional detector channels. The term in parentheses in Eq. 59
comes to

kWg - W2 = (k- 1)[1 - 2(1-W,)/(1 +/K)). (60)

For practical parameter choices, (1 - W,) ranges between 0.05 and 0.2;
hence the correction term in Eq. 60 rapidly diminishes with additional
count channels. The false-alarm frequency declines roughly exponentially
with the number of OR channels, the slope being steepest for the choice
of T; = Ty which maximizes the response U,. This choice is practically
equivalent to set a of Eq. 56, .

Turning now to the AND system, we consider k identical channels
with identically set alarm discriminators, each developing a gate pulse of
length T; whenever the alarm is tripped. Such events are rare enough to
allow one to set T at will, without needing to consider channel paralysis
effects. Alarms in each channel are thus distributed in a Poisson time
series. The false-alarm frequency at the output of a k-fold coincidence
circuit is then the equivalent of the "accidental" or "instrumental” coinci-
dence rate, which for k channels comes to

log f5 = k log f; + (k- 1) log Tg + log k

+ log [1 - TG (kl'( l) + (1) z}((—kfi') - ] (61)

twith alarm level readjusted to deliver the same detection probability for a standard transient of M; pulses
that the OR system had for kM; pulses.
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Equation 61 is readily derived from Poisson statistics. As for paralysis
effects, the correction terms inside the brackets are negligible and may
thus be dropped. Note that fr is the false-alarm frequency in each channel
when adjusted to yield a detection probability gf.

To set the gates TG, one evidently wants to choose the shortest
possible length in order to minimize false alarms. A lower limit is im-
posed by time jitter, ranging from minimum through maximum announce-
ment delay. The maximum announcement delay amounts to the risetime of
a transient that is just barely detected, tpy,ax» Which is given by Eq. 34 for
Ti = Thi for Tp >> Ti = T, tmax * T. The minimum announcement delay,
on the other hand, is small in comparison to the maximum, in view of the
possibility of very large transients, which will trip the alarm early. Such
considerations determine the practical gate length for the three sets of
time constants as

(OL)Tb:Ti=T; To = L;
(B)SThE= T e Pt
(62)
and

G 3Ty e AT £,

Inserting Eqs. 57 and 57' into Eq. 61, and substituting the above
gate-length choices, we obtain

log fg = B - 3kD*U2W%; Ty = T; = T; (63a)
logfy = B +1logy; TRe=aBISSNIE; (63b)
log f.’A = B +§log vi W, >SS =T (63c)
where
B = log k -log (27T) - (k- 1) log (2m). (634)

The set a of time constants, resulting in Eq. 63a, appears to result in a
particularly strong reduction of false alarms through AND logic; set 7',
Eq. 63c, is also interesting, whereas set B, Eq. 63b, is the equivalent of
set v for k = 2, but falls behind for k > 2.
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As before, we may compare the AND scheme to an equivalent
(equally efficient) single channel:

log fa - log f; = logk - (k-1) log 2m - 3 D*U3(kW% -W2); T; = Ty = T; (64)

log fa - log f; = log k - (k- 1) log 2m; Tp>>Tj =T and Tp, = T; 2> T. (64')

The second quantity in parentheses in Eq. 64 comes to

2
e e il 2 e R (e
ERLe Wy G- HWRHL - = ' gw; teoT\W;) | 169

The second and particularly the third terms inside the brackets of Eq. 65
are small (at least for a number of channels less than about 10). The choice
of short time constants is therefore an effective means of reducing false
alarms in conjunction with AND logic, just as for OR logic. This reduc-
tion is, however, less effective than in conjunction with OR logic, as may
be seen by comparing Eqs. 60 and 65. In contrast, AND logic with the
other sets of time constants still reduces false alarms, whereas OR logic
does not (cf. Eqs. 59' and 64'). These facts may be exploited as discussed
in Section B below.

The direct confrontation of OR and AND logic, again with alarm
settings that equalize the detection probability, yields

log f5 - log fy = log k - (k- 1) log 27 - $kD*UR(WE, - WE). (66)

where the second term in parentheses is clea¥ly negative. According to
Eq. 51,

k(W - W2) = -ka.ﬁ7M.[c,(1 - 1/¥K) + € + [G3(1 - 1Mk - e‘]/w,ﬁa_,]. (67)

Equation 66 indicates that the OR connection becomes increasingly prefer-
able to the AND connection as the number of channels is increased; this
conclusion is expected to be reasonably valid over a certain range of time-
constant choices not too different from set a. In contrast, AND logic can
apparently produce beneficial results for long time constants Ty, in which
case OR connection would seem to be a mistake. To emphasize the latter
point, Fig. 13 shows a plot of the false-alarm frequency for AND logic
against the number of channels, k, given time-constant set B and Ty =
50 sec. Acceptable values are evidently reached with k equal to 5to 6.

To sum up the results of this section in practical terms, we shall
suppose that a large number of equivalent count channels are somehow
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b I l I l 2! available, and further specify a
1 v rather low channel count rate.
I i For one or two such channels,

it may then, in fact, not be pos-
sible to make any valid predic-

-6

- — 10 tion or estimate of the count rate

s when the time constants, partic-

-8 — 1/he ularly Ty, are made comparable
—2 to the duration of an expected
W) _l,g¢~= short transient (time-constant
i set a). As more channels are

10 — T added in parallel (i.e., OR logic),
| P an equation similar to Eq. 58,

B 1/doy but with an Edgeworth correction

s il term, can be reasonably applied.

(2= —s Eventually, Eq. 58 should become

valid. A similar exercise with

C AREED = long clipping times T}, would be
14 | | | | |\ | w0 within the range of statistics (if
I 2 3 4 5 6 7 8 possibly with an Edgeworth

correction) at a correspondingly
lower total rate, i.e., when only

a few counters are used. When

channels are then added at the
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Fig. 13. False-alarm Frequency for k-fold AND Logic
and a Choice of Time Constant T, = 100 T
(T = transient duration). To guide the eye, a

line has been drawn through the points corre- input of the count-rate meter,
sponding to integers k. This line has a slope statistical theory, which is un-
approaching -log (2m) asymptotically. questionably valid here, predicts

that there is no effective improve-
ment of the false-alarm frequency. The same total input rate, deployed in
AND configuration, results in reducing the false-alarm frequency exponen-
tially with the number of channels.

If cost is not important in some situation where performance of
the highest quality is wanted, and sufficient stability can be designed into
the electronics, an AND system is thus advantageous in connection with
large values of Ty, where T; may be set to some value between T and
Ty as a practically acceptable compromise between announcement delay
and false-alarm frequency. Such a policy would be indicated particularly
for situations in which the duration of transients is uncertain within wide
limits. When transient duration is determined by flow or processing speed
and therefore relatively well known, a choice of time constants close to that
duration, with maximum deployment of OR-added detection channels, will
give the lowest false-alarm frequency at some acceptable detection proba-
bility. These results are perhaps worth pointing out; since the effect of
signal filtering on the performance of'single channels is often overlooked,
such effects tend to be neglected a fortiori in connection with logic
processing.



Before leaving this subject, we will add some remarks concerning
the possibilities inherent in combinations of AND systems with different
sets of time constants.

B. Composite Logic Circuits

Innuclear coincidence spectrometry, accidental coincidences can be
considerably reduced through so-called "fast-slow" or "slow-fast" logic.
These logic systems basically consist of four channels connected to two
detectors viewing the same source; each detector feeds into one "slow" and
one "fast" channel. Coincident events in the source result in pulses in the
respective fast channels, which are precisely timed but have a poor corre-
lation between pulse height and event energy release; in contrast, the slow
channels deliver poorly timed pulses, whose height contains the desired
energy information. This is effected by integrating filters in the slow chan-
nels, through which the SZ/N ratio is increased as described in Section III.
As a result, pulse-height discriminators in the slow channel exhibit con-
siderable time jitter, and slow coincidence gates must be made at least as
long as this jitter (as discussed in Section A above). If, however, fourfold
coincidences between slow- and fast-channel outputs are required, acci-
dental coincidences can occur only when two independent source events
deliver pulses of appropriate height within the fast gates. The fourfold
coincidence requirement is usually imposed in two stages, combining fast
and slow twofold in each channel and recombining channel outputs in a final
adder, or else adding fast and slow channels separately and then adding
outputs of these stages. The designations "slow-fast" and "fast-slow" have
become customary for these arrangements.

The analogy with pulse processing, which was mentioned in Sec-
tion III, also carries over for coincidence logic. Thus, "slow" channels
have time constants Ty = T; >>T (set B); "fast" channels may have time-
constant sets a or <. One possible arrangement of the logic system is
shown in Fig. 14. Fast channels here are simply derived from the "raw"

(& 7]

Block Diagram of "Slow-Fast" Version of Twofold,
m m m Two-stage AND Logic. dy,dg = detectors, of
closely similar characteristics; H;,Hp = detector-
n m pulse processors (amplifiers/discriminators);
CRMj,CRMg = count-rate meters, with time con-
EB_.ALARM stants Th: Ay, Ap = “fast” alarm discriminators
operating in MNR mode and scanning the raw CRM
trace; Agy,Ag2 = "slow" alarm discriminators, also
m n operating in MNR mode; F = filters of time con-
m m m stant Tp; D = delay of approximately Ty;
AND,, AND, = coincidence adders withoutput pulse
B m width T; and ANDI'.2 = final coincidence adder.

-——
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output trace of count-rate meters, before passing this trac'e through an in-
tegrating filter. (In practice, a filter T; = T may still be inserted.) The
occurrence of a fluctuation that trips the slow channel will then always also
trip the corresponding fast channel, since integrating filters can only smf)oth,
but not add excursions. The smoothing effect is apparent from a compari-
son of Eqs. 57 and 57'. In the system shown in Fig. 14, which is of "slow-
fast" type, each detector channel delivers a rate given by Eq. 57' to the

final coincidence circuit, but coincidence gates are kept to length T, delayed
by Ty in order to encompass jitter in the slow channels. The resultant
false-alarm frequency delivered by the final coincidence stage comes to

log f:,',x = B+klogy. (63e)

This frequency is evidently very much lower than either Eq. 63b or 63c
would predict for one-stage coincidence systems. The central advantage

of a two-stage scheme lies in its use of only a modest number of detector
channels. For example, let y = 0.01, where T = 0.5 sec and Ty, = 50 sec.
Then two-stage AND logic processing yields a false-alarm frequency of
about 3 x 10~% or once every four days, corresponding to five or six slow
channels from independent detectors (of Fig. 13). There is evidently a net
saving of equipment, aside from the possible difficulty in accommodating
six detectors in a scanning head or probe for certain types of transient
monitors discussed in Section II.

The system described here still has two inherent drawbacks: First,
there is a considerable premium on alarm-level stability, and second, the
announcement is necessarily delayed by the integrating time in the slow
channels (in the quoted example, by 50 sec). This makes such a system
unsatisfactory for an application in which the occurrence of a transient re-
quires immediate remedial action, such as fuel-failure warning in certain
reactor plants. Such reactor plants may, however, not even allow the un-
avoidable delay due to the transport of fission products from the reactor
core to the detection station (which requires a minimum time of about
5 sec in a number of such plants now being designed). A shutdown within
about 1 sec after a core channel blockage due to debris emitted by a
"catastrophic" fuel failure can then be effected only by providing direct-
reading instrumentation, e.g., flowmeters. Supposing, however, that a rela-
tively mild failure occurs in which channel flow is not immediately reduced
(or is only slightly reduced); the consequent flowmeter signal may well be
so small that it can be easily missed. A delayed neutron monitor is then
still very useful to provide confirmation; for this restricted purpose, a
delay of 50 sec should be readily acceptable. The situation described here
is an example of a general relation between the time taken for a measure-
ment and its precision. A two-stage‘coincidence system sacrifices speed
for reliability, whereas a straightforward OR connection of all available
channels with time-constant set & tends to be unreliable (unless the total
count rate is high enough), but provides speed.



Another example in which two-stage AND logic is readily applicable
is an area survey, as discussed in Section II. Here, it may at first appear
that the delay inherent in such a system will result in associating the wrong
coordinates with the event. Note, however, that this delay is precise and
thus results in an offset of equivalent precision which can be allowed for in
the registration device.

To sum up, composite logic processing can reduce false alarms
considerably and thus merits serious consideration where a precise
announcement delay can be tolerated.
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VII. SUMMARY

AL Theory

This report discusses the use of relatively simple electronics equip-
ment to detect count-rate transients in a channel that normally delivers
random "background" counts at a quasi-constant mean rate. The basic
problem in this task is the reliable distinction between such transients and
statistical excursions of the background, a matter essentially of exercising
judgment in the visual inspection of a record delivered by the equipment.

In favorable cases, judgment is improved through experience and
becomes more reliable as the "signature" (the shape of the transient char-
acteristic of the causative chain of events that results in the count-rate
excursion) becomes established. For these situations, the equipment may
only be required to produce a record in which transient shape is readily
recognizable and amplitude is enhanced relative to background excursions,
as considered in Section III. More generally, another equipment function is
required: The transient must be announced, possibly in addition to being
displayed. The latter requirement has certain quantitative implications,
discussed in Sections IV and V. In marginal situations, the performance
of the alarm discriminator may be improved by logic processing of the out-
puts of several channels, as discussed in Section VI.

The readability of the display is in part a matter of setting the time
constants of the processor so as to maximize the SZ/N ratio of the channel;
in part, more qualitative considerations come into play. In a straightforward
treatment of the SZ/N ratio, the signal may be taken as the peak response
to a standard square transient of duration T, while the noise is the rms
background fluctuation calculated by Campbell's theorem. The resultant
equation suggests that at least one of the filter time constants be made com-
parable to T. Moreover, the readability of complex transients also improves
as the CRM or input time constant (which plays here the role of the input
RC circuit of a nuclear detector and preamplifier) is made comparable to
the transient duration. This may not be fully realized by operating person-
nel, particularly since count-rate meter channels required to detect slow
variations in the input rate demand the longest possible time constant.

Since count-rate meters are generally used to detect slow rate variations,
they are often equipped with a switch labeled "percent error." For tran-
sient detection, this designation must be ignored. Moreover, the set of

time constants provided in the instrument may have to be changed, and it

is further desirable to provide a second or integrating time constant (which
improves the SZ/N ratio somewhat and is important in connection with the
alarm discriminator discussed in Sections IV and V). Finally, a second
clipping stage is needed to make alarm-discriminator performance indepen-
dent of background. In certain transient-detection situations, it may be



expedient to provide two independent processor channels, fed by the same
detectors, with somewhat different filtering. Each channel can thus be
optimized for a transient of certain mean duration.

The equations giving the SZ/N ratio are valid only as long as
Campbell's theorem (through which the mean background fluctuation is
calculated) applies. As discussed in Sections III-VI, this theorem is
meaningful only for large values of the statistic nTy,, where T, = equipment
time constant and n = mean background rate. Evidently, situations can
occur in transient monitoring where this statistic is small when Ty has
been set to be comparable with T. This does not mean that one should then
use a longer time constant, or that one should not make every reasonable
effort to reduce the background. It does suggest the possibility of increas-
ing the number of detectors or the intensity of the source (for a stimulated
response system) in order to achieve a more reliable quality of performance.

When an alarm discriminator is used to alert personnel to the oc-
currence of a transient or to record transients automatically (as in an area
sweep-survey system), the choice of alarm level is added to the choice of
filter time constants. Moreover, the semiqualitative criteria of S*/N ratio
and signature recognizability are replaced by more quantitative, if statis-
tical, performance parameters: false-alarm probability per unit time,
detection probability, and mean delay between onset of the transient and
alarm. Optimization of the equipment variables implies a tradeoff between
these interrelated detection-quality parameters. The confidence with which
one may calculate the detection probability is largely predicated on the
degree of correspondence between the model on which the calculation must
be based and real transients. As regards the false-alarm frequency, a
first survey, presented in Section IV of this report, yields a straightforward
formula, strictly valid only for background rates that may be somewhat un-
realistic. This is due to the dependence of this formula on the distribution
of the trace slope as well as of the trace level, which makes the false-alarm
frequency even more sensitive to the statistic nTp than the SZ/N ratio,
considered above. Within this rather limited range of applicability to prac-
tical transient-detection problems, the false-alarm frequency, when plotted
against the filter time constant at a fixed detection probability, shows a
spectacular dip for small time constants, where the improvement in SZ/N
ratio makes itself felt. This choice of time constants also corresponds to
minimum delay time and thus might be considered mandatory where the
transient is connected with a serious hazard. The false-alarm frequency
also decreases more gradually for very long time constants, due to the de-
creasing frequency of background excursions, which for those time con-
stants may have amplitudes considerably in excess of the mean excursion
due to a genuine transient.
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To extend the range of validity of the false-alarm frequency formula
toward practically encountered background rates, more realistic trace l.evel
and slope distributions must be used in false-alarm frequency computation
(which uses, in the first approximation, Gaussian distributions for both level
and slope). Distributions that do not differ strongly from Gaussian sl.la.pe
can be described in terms of the product of a Gaussian and a corrective
series, such as the Gram-Charlier series or the Edgeworth series, of which
the latter has the advantage of allowing a straightforward evaluation in
terms of the filter response. On the strength of this analysis, one may
predict the false-alarm frequency with more confidence within a readily
defined statistical limit. Moreover, the dependence of the relatively strong
first correction A(d*¢/dp®) term on the symmetry of the pulse shape de-
livered by the filter suggests the possibility of canceling this term by spe-
cial filtering and thus achieving, at least over a limited range of time
constants, a lower false-alarm frequency at given detection probability.

This possibility of overall quality improvement is roughly analogous
to certain types of smoothing functions, which can be shown to improve the
retrieval of a recurrent signal buried in noise, a subject that has received
considerable attention in recent years.?’ In the present context, it amounts
to reducing or removing all odd moments of the distribution. The first
moment is removed by any filter that blocks dc components; the above-
mentioned dominant contribution to the false-alarm frequency in the region
of interest is due to the third moment.

Certain analogies with the corresponding problem of background
elimination in nuclear counting work further suggest that the false-alarm
frequency can be reduced through logic processing of independent outputs
of several channels. A closer look at this possibility, presented in Sec-
tion VI, discloses that a straightforward coincidence requirement* results
in a higher overall false-alarm frequency than the addition of all channels
ahead of a single alarm discriminator, provided that minimum time con-
stants are chosen. Such a logic scheme does not, however, use all the
information available from the equipment, considering both amplitude and
time dependence of trace excursions. An arrangement similar to a "fast-
slow" coincidence system can take advantage of the relatively low false-
alarm frequency of an alarm discriminator sitting on a filtered trace, and
the sharp timing of alarms derived from unfiltered traces, to result in a
worthwhile overall reduction of false-alarm frequency.

The possible improvements of alarm-discriminator performance
through response pulse shaping or through the more elaborate means of
logic processing are, at this stage, only suggestions that remain to be
tested. In fact, the basic relations between count rate, time constants,

*Between some arbitrary number of alarm discriminators fed by independent and equivalent detector channels
(all viewing the same source of background and transients).
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alarm level, and false-alarm frequency given in this report are equally in
need of experimental verification, for which purpose an experiment has
been started. A count rate one to two orders of magnitude higher than the
practically encountered range is used in this test, with appropriate scaling
of time constants. Even so, false alarms in the upper range of level set-
tings are accumulating at a slow rate, and the experiment must consequently
continue over a long period before statistically significant information is
available. Any schemes for further improvement must await these results.
In a practical sense, these schemes can be considered seriously only when
all other means, such as increasing the number of detectors and improving
the geometry, have been implemented but still fail to provide adequate per-
formance. The cost of such measures is evidently justifiable if it can be
shown that failure to detect a genuine transient may result in a very serious
health hazard, equipment failure, or other untoward event, while, on the
other hand, a high false-alarm frequency results in an equally intolerable
burden on operating personnel and waste of time. Fuel-failure detection

in fast reactors is at least one application of transient detection where a
fairly high investment and development cost is not unreasonable.

B. Applications

In Section II, several different transient monitors were mentioned
and partially described; we add here only some remarks regarding the
applicability of the theoretical framework developed above to some parti-
cular systems. Sweep-type systems, which search for a steady source (or
stimulated emission) by displacement of the detector, allow some latitude
in parameter adjustment and are generally able to accommodate a rela-
tively high false-alarm frequency, especially if the search can be readily
interrupted for a closer second look. These are, however, exceptions such
as track-plate scanning and related scanning tasks where stopping is not
allowed, since the equipment normally runs unattended. The purpose of
such an instrument is basically connected with a desire to save time and
effort. The automatic scanner competes against the skill of personnel
trained in track scanning, and thus must offer speed and reliability at a
reasonable equipment cost. The processor time constant for scanning must
be comparable to, or shorter than, the duration of the transient, as deter-
mined by sweep speed and aperture, so as to provide a direct means of
determining the location on a clock device that is coupled to the sweep (for
example, a scaler counting interferometer fringes, an interferometer being
mounted on the plate carriage). The "background" is adjustable here
through the intensity of illumination; the transient is a reduction rather
than an increase in the count rate.

The duration of transients due to tracks is generally not fixed; it
may be one of the pieces of information sought. The equations presented
in this report thus require some modification to extract relations from
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which to find optimum settings for adjustable parameters in this prob}em:
the sweep speed, illumination, processor time constants, and discriminator
level, For those settings, a false indication probability for the whole sweep,
and a corresponding nondetection probability, can be estimated. This ex-
ample of a transient monitor is evidently similar to area scans in medicine

and astronomy.

A final remark concerns the fuel-failure monitor, frequently men-
tioned throughout this report and described in Section IL. Such systems
are often only considered after reactor plant construction is well on its
way, and thus may have to make do with less than favorable conditions.
Evidently the most practical step toward improving the overall performance
of this type of transient detector would be an early consideration of its re-
quirements, first and foremost the interpretation of the transient strength
and shape in terms of type, extent, and perhaps approximate location of a
fuel failure. In existing installations, such cause-and-effect relationships
are largely indeterminate.

This uncertainty is due in part to the vagaries of the flow pattern,
discussed elsewhere,!” and in part to lack of information concerning the
details of the cladding rupture itself. The assumption made in this report,
that fission products are highly localized as they pass through the detector,
implies a certain flow pattern, as well as very rapid release of the contam-
ination. For an unfavorable flow pattern,* timely detection of fuel-cladding
rupture may be difficult. Finally, a coolant channel may be partially or
entirely blocked shortly before rupture occurs, in which case the injection
of fission products into the main coolant stream would yield a considerably
attenuated transient signal.

These remarks point to the need for flow-pattern studies and simi-
lar work in support of a realistic program of fuel-failure indication im-
provement, together with concurrent development in signal processing.

*The flow pattern may vary considerably over the core face, such that a slug of contamination originating
in certain regions is dispersed in turbulent eddies while a similar cladding burst elsewhere results in a
strong signal.



VIII. SYMBOLS, FORMULAS, AND CONCLUSIONS

The formulas derived in the text and in the appendixes are collected
here for easier reference, and principal inferences and conclusions are
briefly restated. Subsections are labeled with the names of the sections to
which they refer.

A. Introduction

A large variety of different types of instruments can be classified
as transient detectors, on the basis of the following common features:
(1) Input is a random count, Poisson distributed in time, with superposed
transient rate increases of short duration; (2) these transients are generally
rare and occur unpredictably; and (3) the purpose of the instrument is to
detect such transients with high reliability.

Some of these instrument systems are required to record and dis-
play transients, possibly with enough detail to allow recognition of the
"signature" of the event that caused the transient. Other instruments have
the primary purpose of warning, usually within a short announcement delay.
For the general case, certain specific methods of processing the input
will (a) provide the best display; and/or (b) provide the most reliable warn-
ing. These methods are discussed here.

B. Specific Transient-detection Systems

Transient-detection equipment may be conveniently classified ac-
cording to function. One kind of transient de:ector searches an area; a
transient occurs whenever the scan passes over a source. However, this
transient detector type is not emphasized in this report, which is mainly
concerned with the other kind of transient detector, a stationary surveil-
lance instrument; the occurrence of a transient signifies a malfunction or
other untoward event. The prime example of this kind of transient monitor,
considered in some detail here, is a fuel-failure monitor used in connection
with a high-power-density reactor plant.

C. Response of the Processor

We suppose that pulses randomly spaced in time are applied to the
input of a channel consisting of a count-rate meter with certain additional
filters, each filter being described by a time constant. Normally, the CRM
time constant is the equivalent of a differentiator with time constant Tp. A
following smoothing filter or integrator has time constant Tj; and a final
clipper, which may or may not be present, has a time constant labeled here
T,. More complex filters are not discussed. Any differentiating time con-
stant that is very much longer, or integrating time constant very much
shorter, than other circuit time constants can be neglected; the circuit will
respond as if this filter element were absent.
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The combined filter delivers a continuous voltage or current analog
of the input rate, modified by the filter response function. We now suppose
that there are occasional transients in the input rate, of well-defined dux:a-
tion and intensity. The object of the filter is to portray such transients in
a form that allows them to be readily distinguished from the natural statis-
tical fluctuations in the normally prevailing background rate. Let

input mean background rate,

o]
1]

M = number of input pulses in the transient, quasi-uniformly

spaced,
T = duration of the transient,
T, = CRM or first-differentiation time constant,
= integration time constant,

= second-differentiation time constant,

y = T/Tb,

Zo= (e

D? = M?/N,
and

N = nT.

The quality of the presentation is determined by the ratio of peak
response to the transient to the square root of the second moment, or vari-
ance, of the trace due to background alone. The latter is supposed to be
calculable through Campbell's theorem. Input pulse length is assumed
negligible in comparison with any other time parameters. Let

Hmax = peak transient response,

o“ = second moment of the trace,

and
i e i e
Then, for arbitrary Ty and Ty, and T, >> T; and Ty,
R? = ZDZ(y_l + z_l)(ey d 1)22/(2' Y)(ez _1)ZY/(Y‘Z). (17)
As a further special case, let T; << Ty; then,

2D
y

- 2 g
R? = (1. &Y} = 2D/ = "DFRE. (10)



Another important case, T; = Ty, yields

R? = 4(D?/n%y) exp[-2y(h-1)] = D?U?, (177)
where the function

-1

h = (l-etY) , (11)
and the response functions

Up = vZ/hvy (12)
and

U, = (2/hv5) exp[-y(h-1)] (20)

—

have been introduced. Further defining

Z? = 1 +y*h(h-1), (21)
we find a response for three equal time constants, T, = Ty = Tj,

R? = D?U, = (16D?/h%y){exp[-2y(h- 1)]}H{(Z - 1)* exp[2(Z-1)]}, (22)
hence

U, = 2U)(Z-1) exp(Z - 1), (23)
-
which is derived in Appendix B. Equations 12, 20, and 23 are plotted in
&lg-Bi L

Finally, consider the response for a digital channel in which square
pulses of length T} are produced for each input; this comes to
Ré = Dy, y=1,
and (24)
Rfi = D*/y, y =21,

The following conclusions are pertinent:

1. Each of these response functions peaks for values of T}, near
T, i.e., for values of y near unity. The actual peak values do not differ
much, amounting to 0.8 to 0.9 times the detectivity D; a single differentia-
tion and equal integration are about best.
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2. When the expected duration T is shorter than the electro-
mechanical integration time constant of the chart recorder used in display,
the resultant record is necessarily partly filtered, even when the equipment
is otherwise just a stock count-rate meter with single time constant Ty,.
Adequate display further implies another problem: The paper feed rate
must be high enough to spread the transient peak over, say, several inches.
These problems evidently require special solutions.

3. The customary use of count-rate meters for displaying slowly
varying count rates often leads to the use of long count-rate meter time
constants Ty, for transient monitors. The equations giving R? as a func-
tion of time parameters indicate that this is a poor choice.

D. Performance of the Discriminator at High Background Rates

If we now further suppose that the channel output is made to trigger
an alarm whenever the trace exceeds some preset value, the quality of the
presentation can be described in an entirely quantitative way through the
detection probability, false-alarm frequency, and maximum announcement
delay. To overcome the effect of slow variations in the background, a final
clipper is used in the output stage of the filter, making the alarm trigger
a mean-noise-reference (MNR) instrument. Let

g = detection probability,

A = number of pulses that have to pile up to trigger the alarm,
and

f = false-alarm frequency.
Then, in the limit, where the distribution of transient counts can be de-
scribed by a Gaussian with mean and variance M + N, one can define the
detection probability for an MNR alarm discriminator by

g = 1[1 +8(G)]~ 1 - Be PG, (25")
where

G = (M-A)/(2M)V2, (26')

We suppose that M can be estimated from calibration tests and is thus a
known parameter. The constants

B 1.90

and

"

P 3.4

give a reasonable fit over the useful range 0.90< o =< 0 99



Under conditions where A has been selected to obtain a certain
value of g, in the limit of large values of nT}, throughout the range of Ty
and with equal time-constant filtering,

log f = log (y/2nT) - § D*UW?2, (32)
where the parameters T, y, D, and U, have been defined above and
w = 1-(2/M)Y3G. (33)

The relationship between these various parameters can be judged
from the following table of limiting values:

= 8- 1 ¥ :
fae s (RE/2)M20 1 0 y/2nT
M 0 0.5 1 (y/2nT) exp(-D*U%/2)

The case of different filter time constants (Ti < Tp) is briefly de-
scribed in Section VI, which leads to the conclusion that the performance
is worse with short integration (but can be improved, as considered in Sec-
tion V, with pulse symmetrization).

The following general conclusions apply:

1. The false-alarm frequency for a chosen detection probability
can be calculated with confidence from Eq. 32 only when nTy >> 1. That
: g 0.9 4
equation then predicts a spectacular reduction in f for Ty = T. Such a
choice of Ty therefore implies that nT >> 1 to make Eq. 32 applicable;
when this is not the case, the false-alarm frequency cannot be estimated
reliably.

2. This breakdown of statistical theory does not necessarily imply
that large time constants should be preferred. In the large T, range,
Eq. 32 is valid and describes a situation that is inadmissible in most prac-
tical applications of transient monitoring. Let Ty = mean time between
false alarms; then Tg = 27Ty in the limit of very long time constants.
We must now consider that T} is also the maximum announcement delay.
Moreover, the response to real transients shrinks, for such large values of
Ty, to a level comparable to the unavoidable alarm-level jitter due to in-
strument noise.

3. Intermediate or compromise values of T} can easily result in
particularly high values of f. Unfortunately, these are frequently the values
available in stock count-rate meters.
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E. False-alarm Frequency for Practically Encountered Background Rates

The condition that nTy, be large over the entire range of time con-
stants, down to T}, = T, is often not met in practical transient-detection
problems. Equation 32 becomes increasingly inexact with declining values
of T}, (corresponding to increasing values of y). A somewhat more reliable
formula can be found on the basis of Edgeworth's series. One finds that

log% = log (u/27) +log [l - E(u)] - £ H?u[l - 2€%u? + 2.11€%? - .. ], (48)
where

H = (2M/e)[1 - (2/M)V%G), (46)
and

€? = N?/24. (47)
Further,

E(w) = ¥ kul (49a)

is1

is the "Edgeworth correction" in terms of the parameter
-1
u = (nTb) = y/N. (44)

The coefficients k), ..., k; are functions of H, N, and the type of
filter used; for Ty = T;, they are

k; = 3(Ha+b) +c, )
k, = H’a + H%d + 3(Ha+b) c,
ks = H%e + 3Hae? + (H% +H%) c,

(49b)
ky = H%2/2 - 6H2de? - 3H%ae? + (H'e + 3Hae?) c,

and

ks = €’[4H%e - 3.3Hae?] + H%?/2 - 6H2de? - 3Hae?) c, J

with numerical constants



= 0.0987654, |
= 0.0087615,
c = 0.0195973,
d = 0.1257285, [ (49¢)
e = 0.0575345,
J

derived from Campbell's theorem.
To the general conclusions of Section D above, we add here:

1. Equation 48 is useful only within a factor of about two, i.e., for
corrections that add up to unity. Beyond that, the statistical basis of some
of the assumptions that allowed the derivation of this equation begin to fail.

2. Equation 48 is derived from a modified Gaussian distribution,
containing both even (symmetric) and odd (antisymmetric) correction terms.
The latter terms, which would change sign for an alarm level below mean
noise, must vanish when the input pulse response of the filter is symmetric.
However the symmetry must be fairly precise, so that the component of the
pulse appearing below zero is an exact delayed replica of the pulse compo-
nent above zero. A filter or set of filters that yields such a response would
therefore improve the performance of a transient detector and is recom-
mended. (Details are presented in Appendix B.)

»

F. Logic Processing of Transient-detection Channels

In considering the effect of certain combinations of independent
channels, we suppose that k identical detectors are available, and let
M, = number of signal inputs in each channel;

g, = detection probability in each channel, when equipped with
alarm set at a parameter G, (defined below);

and

f, = false-alarm frequency in each channel.
The following cases are now described:

1. All channel inputs are combined and fed to a single processor.
This processing is called the OR scheme. Let
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kM, = signal pulse number (OR);

= detection probability (OR), at a parameter Gg
(defined below);

and

fo = false-alarm frequency (OR).

2. Channels are processed by identical processors, and gates
generated by "alarms" in the processor outputs are applied to a k-fold
coincidence circuit, whose output in turn triggers the overall (actual)
alarm. For this processing method, called here the AND scheme, let

ga = detection probability (AND),
and
fo = false-alarm frequency (AND).
To make a fair comparison between a single channel, a k-fold OR system,

and a k-fold AND system, we impose the condition that detection proba-
bilities be set equal for these three situations,

g1 = €0 = BA» (52)

and compare resulting false-alarm frequencies. This comparison further
requires specification of time constants, for which we select three repre-
sentative sets

‘ (56)

and

(y) Tp>> T; = T.|
The detection probabilities g; are expressed in terms of parameters Gj by

gi = 1-Bexp(-pGi)i i=1, 0, 4; (25m)
which further leads to the definition of useful quantities Wj:

W, = A)/M, = 1-G/2/M,,

Wo = Ag/kM; = 1 - GoV2/kM,,

(51)

Wa = Ay/M; = 1 - GpV2/M,.



The numbers A; are settings of respective alarm discriminators, corre-
sponding to the number of pulses contained in a transient that is just barely
accepted (any number = A triggers the alarm). From Egs. 51 and 25", we
further obtain the useful relation

Gy = Gg = Gy - (log k)/p. (54)
We then find the single-channel false-alarm frequencies

log f; = -log 2nT - 3} D*UWEZ,  (a)

log f; = log y - log 27T, (B)
(57)
and
log f;, = 3log y - log 2nT. (v)
For the OR system, similarly,
log fg = -log 2nT - }kD*W2WE, (@) |
log f5 = logy - log 2nT, (B)
\ (58)
and
log fo = 3log y - log 27T, ™
For the AND logic system, v
log f5 = klog ff + (k- 1) log Tg + log k, (61)
where now
log ff = -log 2n'T - } D*UIWS, (@)
and
log ff = log f;, (B) and (v).
The coincidence gate T is chosen to cover the timing uncertainty:
Tg = T» (@) and () 62)

TG Tb' (5)»



resulting in AND channel false alarms at the rates

logfy = B --lziDszWZ. (a) ;
log f, = B +logy, (B) } (63)
and
logfp = B +3logy, ¢ 0
where
B = log k - log 27T - (k- 1) log (2m).
We may now compare first the OR and single-channel cases:
log fo = log f) - 3 D’Ui(kWG - Wi),  (a)
and (59)
log fo = log f}, (B) and (v);
where
kK(Wh - W2) = (k- 1)[1 - 2(1-W,)/(1+/K)]. (60)

Similarly, comparing AND and single-channel cases yields

log fp = log f; + log k - (k- 1) log(2m) - 3 D*U3(kW} - W2),  (a);

log fp = log f; + log k - (k-1)log(2m), (B) and (y); o
where

(kW -W2) = (k-1) W2, (65)
Finally, a direct comparison between AND and OR systems yields

log f5 = log fg + log k - (k- 1) log (2m) + § D*U3(WE - W), (66)

k(Wh - W) = ZkW,«/Z7M,{Gl(l - 1/MK) + e+ [GE1- 1MK)? - 62]/W|«FM,}, (67)
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These formulas reveal that:

1. The OR connection is preferable in conjunction with time-
constant set a. This provides the smallest announcement delay and best
reliability of the statistical theory on which all these equations are based.

2. The OR connection with sets B or 7y yields no improvement
over a single channel and is therefore ill-advised.

3. For sets p and vy, the AND connection results, in contrast, in
a steady improvement with addition of more channels, which is about the
same for set B or 7y in comparison to a single channel. The overall false-
alarm frequency is, however, very much smaller for set B.

These conclusions further suggest that a composite logic system,
consisting of two stages of AND logic, can reduce the false-alarm frequency
in connection with time-constant sets f and 7, by overcoming the time un-
certainty inherent in the choice B such that the false-alarm frequency be-
comes that pertaining to this set, but with a gate Tg = T:

log f;\_ = B +klogy. (63e)

This implies the following additional conclusion:

4. For any transient-detection problem that can tolerate a precise
announcement delay, a two-stage AND system can effect a very low false-
alarm frequency, at a lower equipment cost than a multiple one-stage AND
system. Detection problems in this category include scanning systems and
fuel-failure monitoring systems complemented by direct-reading instru-
mentation. In the latter case, the transient detector provides confirmation,
at enhanced sensitivity and reliability, of the verdict rendered by the other
instrument.
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APPENDIX A

An Alternative Derivation of the False-alarm Frequency

The false-alarm frequency, or crossing frequency of a given level
in the upward direction was derived in Section IV on the basis of a heuristic
argument, following Campbell and Francis.!” To show that the same result
is obtained from a mathematically more rigorous argument, we shall con-
sider here the zero-crossing rate, a quantity related to the false-alarm
frequency, by applying a number of equations derived in several of the
standard texts cited in the list of references,?” 22!

The zero-crossing rate at zero level can be related in a straight-
forward way to the probability P(xy < 0) that a trace sample, x(t), taken at
time t and another sample, y(t+7), taken a small time T later, have oppo-
site signs, such that the trace must have crossed the zero (with respect to
which sample height x is defined) an odd number of times.

This probability is formally derived from the correlation coefficient
r for the joint distribution of two random processes. We suppose here

that these processes are each described by Gaussian distributions, such
that their joint distribution is given by

1 2 2
£(x, y; 0y oy,r) = (Zﬂoxoy x/l-—rz) exp{[(ox—x) +(;’—y) -Z(c:)c;) r]/z(l-rz)}. (A.1)

It may now be shown that

P(xy < 0) = (cos~! r)/7T. (A.2)

For the foregoing situation, we further can write the correlation
coefficient in terms of the autocovariance

R(T) :f F(t)F(t -7) dt, (A.3)
0

r = R(7)/R(0). (A.4)

If we now consider a very small delay, T, the probability of an odd
number of crossings amounts to the single crossing probability, and even
that is small enough to allow expansi.on of the cosine with retention of only
the first two terms. Thus, we obtain the single-crossing probability
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P1 = (VZ/m)[R(0) - R(7)]"?/ /RTO) . (A.5)

Now the autocovariance, R(7T), is an even function; hence, its expansion with
respect to 7 about the origin can be written

R(t) =R(0) + R"(0)T2 + ... . (A.6)

Hence, for small T, we obtain directly the zero-crossing frequency by in-
serting Eq. A.6 into Eq. A.5 and dividing by T:

fo = (1/m)[-R"(0)/R(0)]"/2. (A.7)

The autocovariance, R(0), given by Eq. A.3 with 7 = 0, is identical
with the second moment of the level distribution calculated by Campbell's
theorem. From this, we find

£y = (1/m) {f[F'(t)]z at/ f[F(t)} dt} led, (A.7")

Hence, the zero-crossing frequency is established as proportional to the
ratio of the second moments of the level and slope distributions, respec-
tively, which result was obtained earlier by a more direct argument.

The zero-crossing frequency can readily be shown to be the limiting
case of the level-crossing frequency for any level above zero. Thus far,
the direction of crossing has not been defined; the false-alarm frequency
is evidently identical with the level-crossing frequency in the positive direc-
tion and hence comes to one-half the latter.
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APPENDIX B
Effect of Linear Filtering on CRM Statistics

For ordinary purposes, the principal information delivered by a
count-rate meter is a voltage or current proportional to the input rate,
i.e., the first moment of the CRM trace distribution. In connection with
transient monitoring, however, this information is of little interest, but the
higher moments of the trace distribution, which determine the false-alarm
frequency, are significant. It is thus generally advantageous to discard the
first moment through a dc blocking capacitor. Together with the input re-
sistance of the following circuit (the CR discriminator), this capacitor de-
fines a third time constant for the system. In the body of this report, this
time constant was assumed to be large in comparison with the other time
constants and could thus be ignored. This assumption is now dropped in
order to consider the effect of a linear filter featuring three arbitrary time
constants, of which two are high-pass filters and one is a low-pass filter.

The response of such a network to a single input pulse is readily
derived, and may be written most conveniently in terms of the half-power

frequencies:

a = I/Ta, where T, = dc blocking final clipping time constant;

b = I/Tb, where Ty CRM time constant;

and
c = l/TC, where T, = integrating (low-pass) filter time constant.*

The circuitry is assumed to isolate each of these filter stages from
the others and thus forestall loading effects.

We first require the response H(t) of such a filter to a transient, of
duration T and mean number of pulses M, valid for any time t = T, and
further the response F(t) of the circuit to a single voltage pulse AV im-
pressed on the CRM bucket condenser. For present purposes, we are more-
over interested chiefly in a filter of equal frequency response b = c,
where the final clipping lower cutoff frequency is at first arbitrary, and
then will be specified to be zero (corresponding to the treatment in the text)
or to be equal to the other frequencies,a = b = c.

*The designations a, b, and c, in preference to the usual symbols Wy, Wy, and w ., are used to avoid difficult-
to-read and readily misprinted subscripts,
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For the general case,

_ _eMAvV (eaT - 1) e-at
H(t) = = azb:c B-a)(c-a) " (B.1H)
and
=at
F(t) = cAV Z _ae® (B.1F)

where the summation sign indicates all cyclic permutations.

Now, specifying b = ¢, one finds

i b \2 -btebT'l b-a o Sl
H'(t) = MAv(b_-a) {e [T[l+(b-a)t] aias B a2, 1

bT
(B.2H)
and
F(t) = AV —— [bte"bt - —2—(e"at_¢-bt) (B.2F)
b-a b-a . .
Let a = 0; then Eqs. B.2H and B.2F become
' -bt ebPT - 1 S
Ho(t) = MAVe ™[ =—0=— (1 +bt) - ebT |, (B.3H)
and
Folt) = AVe~Dbtbt, (B.3F)
Similarly, for the special choice a = b = ¢,
Hy(t) = (MAV/bT)[e PY(bt)?/2 - e P(t-T) 2(¢ - T)2/2], (B.4H)
and
Fp(t) = AVe Pht(l - bt/2). (B.4F)

These equations are readily derived from circuit theory and need
no further comment. We shall use them here to calculate the peak response
to the transient, Hp, ., as well as the second moment of the trace distri-
bution and the trace slope distribution, from which we may infer the
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zero-crossing rate, according to Appendix A. The first correction term of
the Edgeworth series (discussed in Section V), another parameter influenc-
ing the statistical quality of transient detection, will then be calculated. The
full effect of the filter can then be estimated.

The peak response for b = ¢, a = 0 had already been calculated; it
comes to

(H)pay = MAV(hy)™ exp[-(h-1) y], O

where we introduce the notation

b = (14T (B.6)

and

y = bT. (B.7)

For a = b = c, we differentiate Eq. B.4H and equate the result to
zero, thus obtaining a quadratic equation for the peak time. (Equation B.4H
describes a trace response with a maximum and a minimum, similar to a
doubly differentiated (DD-2) pulse-amplifier signal.) The maximum occurs
at the time

ty = b (l+yh-2), (B.8)

where

Z = [1+h(h-1) yz]l/z. (B.9)

Inserting Eq. B.8 into Eq. B.4H and rearranging, we find that

(Hp) . = (Ho)max(Z - 1) exp(Z - 1) (B.10)

is the peak response for this special case. The factor (Z-1) exp(Z-1) can
be readily estimated. An expansion of the root in Eq. B.9 yields

Z = J2(1-y%/24 + y*/480 - ...)V?, (B.11)
which clearly varies only slightly for values of the parameter y within the

range of practical interest, 0 = y = 1. Thus, to a reasonable approximation,
we may put

(H{))max ~ 0.626(1-0. 101y2)(Hg)max. (B.10")



The second moment of the distribution generated by random input at
rate n in a filter b = c, a = 0, has also been calculated before; it comes
to

Az = (05)* = nAV?/4b. (B.12)

A similar calculation, applying Campbell's law to Eq. B.1F,yields the
second moment for three generally different filter frequencies a, b, and c:

Az = 0% = nAV3c?/2(a+b)(a+c)(b+c). (B.13)

The special case, a = 0, given by Eq. B.12, follows directly from Eq. B.10;
so also does the case a = b = ¢, for which

(0p)? = navZ/16b. (B.14)

The SZ/N ratio can thus be found for the latter case, using Eqs. B.10' and
B.14. It amounts to

Ry = 1.252R4(1-0.1y?), (B.15)

in terms of thea = 0(S/N) ratio Ry. Thus far, the effect of a short final
clipper in comparison to a very low final frequency cutoff (a = 0) is a cer-
tain loss of signal, i.e., transient response, accompanied by a somewhat
more severe reduction in the rms fluctuations, which in fact are halved.
A plot of the exact response function, shown in Fig. B.1, reveals that for
], RL rather quickly drops below R‘;. This does not alter the fact that

Rl') > Ry within the range of practical interest.

10 T TT Illlll T T Tllll}’\ : T lbllTT1'
L - -
kel 7K | Fig. B.1
/ \ Filter Response to a Transient of Duration T. Curve a:
H // \ \ single high-pass RC element (Eq. 12). Curve b: One
08 | /’ - low-pass, one high-pass, filter (Eq. 20). Curve c: Two
/ \ high-pass, one low-pass, elements (Eq. 23). Cutoff
= oA / \\ N frequency of all elements is b= Tb~1. Broken line
o // bl shows response of digital CRM with "memory” T,
/’ 5 (Eq. 24). The normalized response (unit signal and
P Z 5 background) is plotted against the parameter y = bT;
02 ,// ] vertical scale is linear to emphasize peak region de-
’ 2 tail. (A similar plot with logarithmic scale is pro-
1 vided in Fig. 4.)
o Sod lllllll P lllllll Rl
001 0.1 10

10.0
o 113-953
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The zero-crossing frequency is given by Eq. A.7. Differentiating
Eq. B.2F and solving the integral giving the mean square of the slope of the
pulse response, or slope autocorrelation at zero delay, one finds, after
some rearrangement,

f(dF/dt)2 dt = AV?b(b+2a)/4(a+b)? (B.16)

for b = c, with arbitrary final clipping frequency a. From this, the zero-
crossing frequency comes to

fo = (b/2m)(1+2a/b)"2, (B.17)

Comparing now a = b, and a = 0, the zero-crossing frequency evidently
increases by a factor of./3 for sharp clipping. This effect, which makes
itself felt as increased input noise in pulse amplifiers that feature DD-2
filtering, is hardly surprising. From the point of view of transient detection,
this effect is bad news, but may be more than compensated for by the in-
creased exponential factor (for y = 11

We shall now consider, finally, the effect of clipping on the distri-
bution and, more particularly, consider how filtering can make this dis-
tribution more symmetric with respect to the mean trace level. The
deviation of an actual distribution from symmetric shape finds its expres-
sion in those terms of the Edgeworth series that are proportional to odd
powers of the difference between output signal and mean output signal.
These terms also are multiplied by a "skewness" parameter, which is pro-
portional to an odd moment of the distribution.

In principle, the response F(t) can always be shaped to make all odd
moments vanish, whereupon the trace distribution becomes at least sym-
metric, if still not entirely Gaussian. This distribution can be secured with
any F(t) that exactly repeats itself, with reversal of the signal-voltage sign,
such that F(t) folds into itself upon rotation through the zero-crossing point
by 7. (Such response shapes are available from any carefully constructed
DD-2 pulse amplifier, and can therefore be made to order for a CRM
channel, with a suitable scaling of the time dependence.) To the extent to
which Campbell's theorem is valid, all even moments are doubled, and all
odd moments canceled, by this type of linear shaping, in comparison with
the distribution that would result from only one-half the signal. This fact
is intuitively plausible if one considers that the trace is the result of ran-
domly superposing a large number of pulse responses F(t); as long as F(t)
is symmetric, the trace is also symmetric. Digressing somewhat from the
task of investigating the simple final,clipping circuit under consideration,
we may suppose that a filter is available that yields a response shaped like
a single period of a sine wave, F(t) = AV sin (wt). The second moment of
the trace made by a random input with such a filter is then



A’Z - (n7l’/d)) szn
the zero-crossing frequency can readily be found to be
fo = w/2m,

and the third moment vanishes, as is evident from inserting this pulse shape
in Campbell's equation and integrating.

Proceeding now to evaluate the third moment for the elementary cir-
cuit described above, we take the response given by Eq. B.2F with b = ¢
and a arbitrary. Integration and considerable rearrangement yields

2n AV?b? 8(a+b)? - 5ab

Ag = "
2 27 (a+2b)*(2a+b)?

(B.16)

Equation B.16, plotted in
Fig. B.2, reveals an impressive de-
crease of the third moment with in-
creasing lower cutoff frequency a.
However, the skewness parameter,

IR T

27\ /2navib?

T
1

§ = As/(310)3,

is actually not strongly affected by
final clipping. From Eq. B.13, we
find the second moment for b = c.
Hence,

T T T
1 AA}AII‘

T
1

0.0

s = =

8 /b\"?8(a+b)? - 5ab /a+b)’
81(n)

(2a + b)? \a+2b

TTTTTT]
lilllll

(B.17)

T

T

Equation B.17 is plotted in Fig. B.3.
| | | | | | The skewness of the distribution can
o b 2 3 =gt )l apparently be worsened by very strong
113-654 final clipping. In the light of the
above remarks, the response shape
[ F s B Jumans of Rwipettan, 400ming exhibits relatively the best symmetry
to Eq. B.16. The ordinate Lspropordn?nal for a = 0.5b, but even at that point is
to the third moment; the abscissa indi- o g
cates the lower cutoff frequency of the not sufficiently symmetric to affect
final high-pass filter. distribution skewness significantly.
This circumstance suggests that a

trace symmetrization filter will have to be designed carefully, to match
positive and negative excursions precisely.

0.001
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0040 T T T | e ) T T
a/b =0 il Fig. B.3
i 7 Skewness Parameter S versus Ratio of Time Constants
S = a/b, in Arbitrary Units. The skewness does not in-
T crease without limit as a/b increases, but eventually
\—/ : approaches a value just twice the lower (a/b = 0)
| | limit indicated on the left margin.
0.030 1 L 1 - 1 1
o1 0.2 0.5 ! 2 113-659

For the special cases a = 0 and a = b = ¢, we find the skewness
parameters

So = 0.0987vb/n, (B.18)
and

S, = 0.889S; = 0.0879 vb/n, (B.19)
respectively.

Suppose, however, that a delay can be fabricated that inverts and
repeats the pulse,

F(t) = (AV/2) bte~bt,

after some time tq. We have, then,

F(t) = (AV/Z) bte'bt; 0<t=< td;
(B.20)
= (AV/Z) b(t -td) e'b(t'td); tg <t=< o,
The usual treatment by Campbell's law yields the second moment,
A, = (nAVZ/8b)[1+2(1-btg) e Ptd], (B.21)

as well as the third moment,

A3 = (nAV3/72b){2(btg - 1) e™Ptd + [3btg(btg - 1) - (btg-1) + 1] e 2Ptd},
(B.22)

In the limit of large delays, the second moment is twice its value
for an unrepeated pulse,* and the third moment vanishes. On the other

*Of height AV/2, for comparison,
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hand, the choice btg = 1 also doubles the second moment, but leaves a
small residual third moment, A; = nAV’/72ezb. The skewness parameter
for this case comes to 0.0071(b/n)/2, which is more than an order of
magnitude smaller than the skewness with optimized double differentiation,
although the actual pulse shape is not markedly different for these two
filters. This illustrates the sensitivity of the odd moments (hence,
skewness) to pulse-shape symmetry.

The third term in Edgeworth's expansion is again entirely com-
posed of odd moments. A pulse shape that makes these moments either
very small or zero thus allows in principle a somewhat greater reliance
on the correction, which is then largely due to the fourth moment. This
stratagem therefore provides a more reliable estimate of the false-alarm
frequency (as well as a reduction by a worthwhile amount in the actual
false-alarm frequency).

In the time regime defined by the expected transient duration for a
typical transient-detection system, e.g., the fuel-failure monitor, the shap-
ing of pulses by means of delay lines is difficult and expensive, requiring
multiple sonic delays or possibly readin and readout on a disc or tape
magnetic memory with appropriate spacing between write and read heads.
The digital system described earlier, although less flexible with regard to
the maximum admissible count rate, appears as a relatively less expen-
sive and highly reliable alternative means of precise pulse shaping. For
this reason, a test of this possibility through a computer simulation is
planned for the future.
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APPENDIX C

A Note on an Expansion Used in This Report

The response of a filter with two equal time constants Ty to a
transient of strength M and duration T is given by

2M 1 - e7Y Y M
Rz =—— exp = Uy(y), (c.1)
SN eY-1 JN
where
Ay
Ty
and

N = nT = background (mean) during transient.

The exponent -y/(ey - 1) in the above equation can be expressed in a series
of Bernoulli as follows:

¥ :l_l+B1yZ_Bzy‘+Bay"_ ’ C.2)
Sore g 4! T 3
with
B 16
Bs =01/30;
Bia=1/42}
Generally,

B, = 2(2k)! § (2mj) "%k,
j=o

Inserting Eq. C.2 into Eq. C.1 and rearranging yields

Uily) = (4/e /5) sinh (y/2) exp[f Bky’k(—)“/(Zk)z] . (c.3)
k=1
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For small values of y, the Bernoulli series is also small in value;
hence, the exponential term may be dropped. For values of y near unity,
one may expand the hyperbolic sine and obtain

Uy(y) = (25/e)1 - y2/24+1.1(y?/24)% - 1.15(y%/24)% +...]. (C.4)

The second and higher terms are quite small, even for y values somewhat
larger than unity. The series can still be used without significant loss of
accuracy for still larger values, provided more terms are included. This
makes Eq. C.4 useful in conjunction with digital computation of a number

of problems in which equations similar to Eq. C.1 occur, in view of the wide
use of equal time-constant pulse processing.
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APPENDIX D

Statistical Performance of Digital Count-rate Meters

The false-alarm frequency for transient detection is treated in the
body of this report on the basis of the continuous level and slope distribu-
tions obtained with analog equipment. Digital count-rate meters, in con-
trast, deliver an output consisting of small but finite steps, and thus re-
quired discrete distributions for the development of false-alarm-frequency
formulas.

The fact that digital circuits, based on certain logical connections
of elementary "go/no- go" units, offer almost absolute long-term stability
has been recognized for some time. Only recently, however, with the advent
of integrated (single-chip) digital units, has the cost of constructing an ex-
tensive logical network (required to provide the memory feature character-
istic of count-rate meters) become low enough to make digital count-rate
meters a practical possibility. These developments have similarly influenced
the cost and availability of computers. This discussion of the statistics of
digital count-rate metering may thus apply equally to a fully integrated in-
strument, or to a computer program through which similar basic circuit
elements, incorporated in a computer, perform exactly the same function.
As mentioned in the body of this report, the choice between on-line compu-
tation and a separate instrument for a given transient monitor depends on a
number of cost factors which are expected to vary greatly in the near future.
A realistic appraisal must balance the relatively high cost of software and
possible interfacing against the flexibility, availability for other tasks, and
large memory of the computer, and consider, on the other hand, the advan-
tage of compactness and direct accessibility for maintenance and testing of
the developed instrument. The choice becomes even more difficult when one
considers the possibilities of logical and/or multiplexing of several indepen-
dent detector channels, as outlined in Chapter VII. Thus, a number of rela-
tively simple digital circuits, employed in such a logic network, may well
outperform a more sophisticated single digital count-rate meter in some
particular transient-detection setup.

To provide at least the framework for the task of optimizing digital
processing equipment for a certain transient monitor, we shall derive false-
alarm formulas for an elementary count-rate measurement device (i.e., a
cyclic count-and-dump scaler) as well as for an instrument that can be logi-
cally developed from a number of such channels and includes a memory
feature.'® Other more complex digital count-rate meters have beendescribed
in the literature.'® These instruments aim at the simulation of the perfor-
mance of analog circuitry by providing the digital equivalent of a condenser
discharge; their false-alarm frequency should thus be about the same as
pertains to analog instruments (to the extent that the simulation is realistic).



A cyclic count-and-dump scaler, sometimes referred to as a
"digital count-rate meter," is, strictly speaking, an instrument of a
somewhat different kind: information is delivered only at intervals
and necessarily concerns a time average over the immediate past count
interval, T, beyond which there is no memory. In a transient monitor
with a quasi-constant background input rate n and an expectation of M signal
pulses within a short time span T, it is readily apparent that a very long
counting interval will tend to bury the signal in a large background compo-
nent nT. = N, much as is the case for analog circuitry treated in Chapter III.
A counting interval comparable to T, on the other hand, involves the risk of
splitting the signal between two intervals, such that neither countis sufficient
to trip the alarm level (a preset number of counts A, where N< A < M).
This risk is lessened by feeding the input into two parallel channels, cycled
out of phase, one of which is then more likely to contain the full number M
within a single interval T.. At the same time, the false-alarm frequency is
necessarily doubled for this arrangement, while the mean announcement
delay is shortened. Further development of this stratagem leads to a sys-
tem consisting of M channels, for which the risk of missing the transient be-
comes very small as M is made large, while the false-alarm frequency is
commensurately increased. This kind of system is obviously unwieldy and
may be replaced with a unit consisting of a shift register containing M bits
and an add-subtract scaler, whose performance is described in Chapter III
(or, in more detail, in Ref. 16). Each pulse is added to the scaler and also
entered in the shift register. At the end of an interval Tp = M/r. where r
equals the shifting rate, the pulse emerges from the other end of the shift
register and is subtracted. In comparison to an elementary analog count-
rate meter, this system produces a step increase of the output voltage which,
instead of decaying exponentially, lasts at ful] height for a time Tp, and then
ceases abruptly. The second moment of the output trace can thus be com-
puted from Campbell's theorem with a "square-pulse" single-input response,

F(t) 102 %% Tk

= 0,t< 0andt< Ty (D.1)

The slope distribution, on the other hand, is evidently not derivable from the
time derivative of Eq. D.1, as will be considered further on.

We shall now find the false-alarm frequency for a count-and-dump
channel, on the basis of a simple probabilistic model which assumes only
that the input rate n is Poisson-distributed. This assumption implies a
mean scaler content N = nT.and a variance also equal to N. The probabil-
ity of finding K counts, Wy, is given by

wgk = (NE/K1)e-N. (D.2)
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The probability of occurrence of a false alarm thus comes to the sum

Py(A) = i Wk (D.3)
K=A

To find a false alarm within some selected time interval T, it is necessary
that the count just preceding this interval does not trip the alarm, while the
next count does. The false-alarm frequency, f, is thus the product of the ad-
joint probabilities for these conditions, divided by the inspection interval Tg;
that is,

A-1
£=y wg § ow /T (D.4)
K=0 L=A

It is expedient to express Eq. D.4 in a more convenient form. Onthe assump-
tion that K is large, we make use of Stirling's theorem, through which the
probability Wy becomes

Wi = (eK'N JEK)(N/K)K. (D.5)
Introducing the parameter

B = (K- NN (D.6)
and taking logarithms, one finds that

log W(B) = Pv/N - }log 27N - (N + /N + }) log (148 A/N). (D.7)

The last term of Eq. D.7 is expanded and small quantities are dropped,
whereupon one obtains the Gram-Charlier or Edgeworth representation of
the Poisson distribution, in terms of a Gaussian and a correction series al-
ready discussed in detail in Chapter VI:

w(g) = (ZWN)'%e'BZ/Z[H(ﬁ’-3;3)/6Jﬁ+...]. (D.8)

Proceeding now to find an expression for the false-alarm frequency, we re-
place the sums in Eq. D.4 with integrals, approximate large limits by «», and
neglect 1 in comparison with A. Moreover, we may drop the Edgeworth
series for purposes of obtaining merely a reasonable approximation, and thus
obtain the simple expression

f= GTI1-0%U)] (D.9)
where

U = (A- N)/+/2N (D.10)
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and ® is the error function, introduced in Chapter IV. We note that Eq. D.9
predicts a "zero-crossing" frequency (U = 0), which is directly evident if one
considers that there is an even chance for crossing, or not crossing, the
mean N between any two randomly chosen intervals; another factor of 2 is
obtained when crossing is counted in only one direction.

For large values of the argument U, on the other hand, Eq. D.9
may be expressed in a suitable expansion which converges fairly rapidly,

£ = [n/2nT (A- NRJE[1 - N/(A- N)? + ...Je (A-N)?2N, (D.9")

Equation D.9' shows a particularly steep decline of the false-alarm frequency
with level above mean, A - N, and with the count interval T.. This perfor-
mance is so good that it suggests the practical possibility of two out-of-phase
channels, as considered above.

We turn now to the false-alarm frequency of an assembly of M such
count-and-dump channels, arranged to cycle at evenly spaced intervals,
which also applies to the digital count-rate meter described in Ref. 16, or
to an analog count-rate meter that develops square pulses. This false-
alarm frequency is evidently smaller than M times the rate obtained from
Eq. D.9', since a false alarm, when it occurs, will probably appear inseveral
of the M channels, yet such an alarm should be counted only once. We shall
use the digital count-rate meter as a basic model for developing a false-
alarm-frequency formula, and note that the number of pulses stored in the
shift register at any time must always be exactly equal to the number appear-
ing in the add- subtract scaler. The situation we are considering has a
strong resemblance to certain aspects of Queuing Theory, a subject covered
by "an incredibly voluminous literature," to quote a remark by Feller.* A
search of this literature for the solution of the exact problem posed here
turned out, nevertheless, to be unavailing. The development given below is
therefore not based on previously published work--admitting the possibility
that a more exhaustive search may discover a treatment of a closely similar
problem in traffic control, design of a servicing facility, or telephone
communications.

We shall assume that the number of available shift register bits M is
considerably larger than the mean number N of occupied bits. The system
thus has a negligible digital dropout; that is, the chance that two inputsarrive
within the shifting period 1/r is very small. (For a practical unit, such a
second pulse can be temporarily stored; hence the digital dropout is a man-
ageable problem even at high input rates, as discussed in Ref. 16.) For
every shift, the system plays a coin-tossing game, with an a priori probabil-
ity n/r of "success" and adjoint probability 1 - n/r of "failure." Hence,
the probability of finding exactly K pulses stored in the shift register
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and therefore also in the scaler) is given by a binomial rather than a Poisson
distribution law,

Py(K) = MI/[(M-K)! KHHN/MK[ 1 - (N/M)M-K, (D.11)

(Note that n/r = N/M.)

A false alarm occurs whenever the store, upon the completion of a
game, happens to contain exactly A - 1 events and the next game results in
adding another event. This further implies that the game played Ty earlier
had a negative result, such that the shift register does not lose one event at
its delivery end while it acquires a new one at its receiving end. Finally, the
inspection interval for this situation has been shortened to Td/M, whence the
false-alarm frequency comes to

f

(M/Tg)[1 - (N/M)J(N/M)Pyg_,(A-1)

(A/TQ)[1 - (N/M)]Pp4(A). (D.12)
As before, this can be readily processed by Stirling's formula and the

Taylor-McLaurin expansion. We further introduce the alarm-level
parameter

A=N+Bog, (D.13)
where
o =+/[1- (N/M)]N (D.14)

is the variance of the binomial distribution given by Eq. D.11. After some
manipulation, we obtain the Edgeworth representation,

f=[1- (N/M)JN + ﬁo){e_ BZ/Z/Td(Zﬂc)%}
x{l+({33—3[3)[1 - (ZN/M)]/602+.,.}. (D.15)

Dropping small quantities, we obtain

f =mo/n/2mTg4 e” 2z,

B = (A-N)AN. (D.16)

As already suggested, this false-alarm frequency is considerably higher
than that for a single count-and-dump channel, given by Eq. D-9. On the
other hand, the detection probability for the M-channel instrument is, signif-
icantly improved.



Equation D.16 can be derived also on the basis of the square-pulse
count-rate meter model, for which we may take the argument of Campbell
and Francis, as expressed in Eq. 28:

fil= P(a)f sP(s) ds, (D.17)
0
where
P(a) = e P2/ foro2 (D.18)

is the level distribution probability. The slope distribution, P(s), is given
by a sum of delta functions. Realistically supposing that the square pulses
actually have trapezoidal shape with constant rise and fall slope sy, we can
put

P(s) = b[&(s- s) + 6(s+ s0)] + (1 - 2b) 5(s). (D.19)

The weighting constant b is the probability that a random sampling of the
trace will catch the trace while rising or falling,

b= n/s,. (D.20)

The second moment of the level distribution may be calculated with response
F(t) given by Eq. D.1, to a sufficient approximation; this yields simply

o? = nT,. » (D.21)

After inserting Eqs. D.18-D.21 into Eq. D.17 and integrating over all posi-
tive slopes, one finds a false-alarm frequency given exactly by Eq. D.16.

To sum up, false-alarm formulas can be readily derived for digital
count-rate meters and/or simple count-dump cyclic scalers. The latter
formulas may then be modified to find the false-alarm frequency for several
out-of-phase cyclic scalers, and either type of count-rate processor can
further be deployed in an AND/OR logic system deriving input from several
statistically independent channels. The entire system can be constructed as
a separate instrument or as a computer interface, or produced entirely
through programming. These possibilities offer a wide range of choices;
indeed, the optimization of such a system itself appears to require extensive
programming of a computer. As in other applications of systems analysis,
this process may be expedited by programming a simulation of the problem
instead of developing solutions to equations that (as frequently stressed in
this report) tend to break down when certain limits are reached by the input
parameters. Such a simulation program offers the further advantage that it
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can readily be adapted to on-line processing of a surveillance or scanning in-
strument. The cost of this investigation must be weighed against the poten-
tial cost of failure of a surveillance system. In that connection, it may be
emphasized once more that it is not enough to maintain all instrument com-
ponents of such a system in excellent operating condition, but that time con-
stants and alarm levels (i.e., the detection strategy) must be optimized as
well in order to provide the best margin of safety.



APPENDIX E

Information Processing and Display System Design

In connection with the general description of transient detection sys-
tems of various types presented in Section II, some of the means of display-
ing fast transients are described in somewhat more detail here, to
illustrate the strong influence of input parameters on equipment design.

For most of the vehicular area-survey systems, the duration of

the transient may amount to at least several seconds. Hence a conventional
count-rate meter, filter circuit, and pen recorder are entirely adequate and
probably preferable to more elaborate processors. Several channels can be
readily combined, possibly along lines suggested in Section VI, or several
channels featuring different time constants employed in parallel. The sta-
bility of the equipment can be checked against a standard source at suitable
intervals, or a feedback stabilizing system devised.

Survey systems operating under conditions where the time consumed
by a survey must be minimized (while no limitations exist on the sweep
speed) may yield transients that are substantially shorter than the response
of pen recorders. Such equipment is nowadays frequently designed for
computer control. Hence, processing can be most efficiently carried out in
the digital regime, through suitable programming. The program must pro-
vide a digital count-rate meter routine for each input channel, with certain
time constants, warning levels, and other parameters. Display, either con-
tinuous or on demand, can be provided by a cathode-ray tube. Signal en-
hancement can be effected where this is useful; for other purposes, as, for
example, certain track-scanning tasks, it may be sufficient to write a
signal-recognition program such that the computer calculates and/or plots
the number of tracks per unit area without on-line display.

The processing of transients from a fuel-failure monitor appears
to be intermediate between the two above-mentioned applications so far as
transient duration is concerned. Chart recorders of the potentiometric
feedback type, with a typical response time of 1 sec, are clearly incapable
of displaying fractional-second transients, while the great speed of com-
puter processing is wasted on channels whose normal count rate is only
lO-lOO/sec. At the same time, continuous duty and immediate display of
any transient are required, while input information which is clearly estab-
lished as background only can be discarded after some storage period.

A permanent record is wanted only when a transient occurs.

All these features can be provided by a computer, with a digital
processing program and oscilloscope display. Permanent display is avail-
able by means of tape or digital printout, chart or graph-writing equipment
or photograph of the oscilloscope: the latter can be taken on command of
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an alarm discriminator, while the other, slower outputs can be obtained

at any later time, assuming that erasure of the transient, stored in the
memory in digital form, is also inhibited by the alarm. The cost of such

a system is, however, rather high. Where a large computer already exists
for purposes of processing other instrument channels, the additional cost
of memory capacity, interfacing and software for the fuel failure channels
may be modest in comparison with the cost of the whole system. When
such computer capacity is not provided, (as was the case for EBR-II), a
specially designed information processor may be a reasonable solution.
Such a system, described in detail in Ref. 23, was originally designed for the
FERD loop

Inthat processor, incoming counts are directly written on magnetic
tape and also fed to a count-rate meter with attached alarm discriminator.
After a certain delay, the tape passes over a readout head and thence into
a magazine with about 5 min maximum storage capacity. Upon emerging
from the magazine, the record is erased just ahead of the write head. If
an alarm is given, the paper feed and light intensity of a fast light-writing
chart recorder are turned on, such that the written record starts 1-2 sec
ahead of the transient and then displays the whole transient. This readout
can be repeated a number of times by interrupting both erasure and input
and thus preserving the record. The whole system operates on two inde-
pendent channels.

This relatively simple and inexpensive device allows recording at
a paper feed rate which (if left on continuously) would consume several
miles of paper per day, yet is required for a clearly recognizable record of
fractional second effects. It also provides limited storage of transients in
digital form. Its chief drawback appears to lie in the difficulty of secur-
ing continuous operation with minimum maintenance: presently avail-
able magnetic tape tends to wear badly in a continuous loop magazine and
requires occasional replacement. Improved tape quality, which now appears
to be a strong possibility, or mechanical design improvements which re-
duce wear should overcome this difficulty. On the other hand, a digital
delay system, using shift registers which have recently come down con-
siderably in cost, may well be preferred. This system would be employed
in conjunction with a digital processor, of a total cost intermediate be-
tween that of a tape/analog unit and that of a computer.
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